This code calculates the minimum difference you can achieve by removing elements from a sorted array.
Here's a step-by-step explanation with code snippets in each language:
Each code snippet defines a function named minDifference
that takes an integer array nums
as input.
C++:
class Solution {
public:
int minDifference(vector<int>& nums) {
// ...
}
};
Java:
class Solution {
public int minDifference(int[] nums) {
// ...
}
}
JavaScript:
var minDifference = function(nums) {
// ...
};
Python:
class Solution:
def minDifference(self, nums: List[int]) -> int:
// ...
}
Go:
func minDifference(nums []int) int {
// ...
}
The code first checks if the array size (n
) is less than or equal to 4. If so, the minimum difference is 0 (removing elements from such a small array won't make a difference), and the function returns 0.
C++:
int n = nums.size();
if (n <= 4) return 0;
Java:
int n = nums.length;
if (n <= 4) return 0;
JavaScript:
const n = nums.length;
if (n <= 4) return 0;
Python:
n = len(nums)
if n <= 4:
return 0
Go:
n := len(nums)
if n <= 4 {
return 0
}
The code then sorts the input array nums
in ascending order. Sorting is necessary to efficiently calculate the minimum difference later.
C++:
sort(nums.begin(), nums.end());
Java:
Arrays.sort(nums);
JavaScript:
nums.sort((a, b) => a - b);
Python:
nums.sort()
Go:
sort.Ints(nums)
The core logic involves calculating the minimum difference achievable by removing elements from the sorted array. The code considers four scenarios:
- Removing the 3 smallest elements.
- Removing the 2 smallest and 1 largest element.
- Removing the 1 smallest and 2 largest elements.
- Removing the 3 largest elements.
It then uses a min
function (built-in or custom) to find the minimum difference among these four scenarios and returns that value.
C++:
return min({
nums[n - 1] - nums[3],
nums[n - 2] - nums[2],
nums[n - 3] - nums[1],
nums[n - 4] - nums[0]
});
Java:
return Math.min(
Math.min(nums[n - 1] - nums[3], nums[n - 2] - nums[2]),
Math.min(nums[n - 3] - nums[1], nums[n - 4] - nums[0])
);
JavaScript:
return Math.min(
nums[n - 1] - nums[3],
nums[n - 2] - nums[2],
nums[n - 3] - nums[1],
nums[n - 4] - nums[0]
);
Python:
return min(
nums[n - 1] - nums[3],
nums[n - 2] - nums[2],
nums[n - 3] - nums[1],
nums[n - 4] - nums[0]
);
Go:
return min(
nums[n-1]-nums[3],
nums[n-2]-nums[2],
nums