-
Notifications
You must be signed in to change notification settings - Fork 0
/
dwi_skript_bidirect.Rmd
279 lines (181 loc) · 6.73 KB
/
dwi_skript_bidirect.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
title: "dwi"
author: "Niklas Wulms"
date: "7/15/2020"
output: html_document
editor_options:
markdown:
wrap: 72
---
Install fsl - take care - you need to set the .bash_profile or .bashrc path variables. Otherwise the script won't work.
Always start R/Rstudio from the Terminal - so that is has access to fsl. Otherwise no processing happens.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(doParallel)
library(foreach)
library(oro.nifti)
library(neurobase)
library(xml2)
library("XML")
source("dwi_processing/dwi_functions.R")
# parallelization option
cores_not_to_use = 1
topup = "off" # (on/off) sets topup "on" or "off"
end_on_fdt = "yes" # (yes/no) "yes": if you have an error, that files with fdt are not found, turn this on. "no": "_FA" will be applied to the end of the filename.
```
## Input files
```{r eval=FALSE}
# load("../WMH_Paper_Dashboard/data/2021_07_05_Workspace_WMH_Analyse.Rdata")
#
# selected_subjects <- daten_s0$idbidirect %>% unique() %>%
# paste(collapse = "|")
#
# bidirect_dwis <- list.files("/mnt/Storage1/bidirect_processing/BIDS/derivatives_temp/FSL/PSMD/", "dwi",
# recursive = TRUE, full.names = TRUE)
#
# bidirect_dwis_1 <- bidirect_dwis %>%
# str_subset("ses-s(0|4)") %>%
# str_subset(selected_subjects)
#
# bidirect_dwis_1_out <- bidirect_dwis_1 %>%
# str_replace("PSMD", "TBSS_mahi_0_059375/sourcedata")
#
# bidirect_dwis_2_out <- bidirect_dwis_1 %>%
# str_replace("PSMD", "TBSS_mahi_0_0059375/sourcedata") # unrealistic readout time at eddy!!!
#
# # copy them
# path_to_folder(bidirect_dwis_1_out)
# path_to_folder(bidirect_dwis_2_out)
#
# file.copy(bidirect_dwis_1, bidirect_dwis_1_out)
# file.copy(bidirect_dwis_1, bidirect_dwis_2_out)
```
# Start original script
```{r}
# this folder needs a subfolder "sourcedata" containing data in BIDS specification
# and a folder "params" with "acqparams.txt and index.txt
## tric data
# BIDS_folder <- "data/data_tric/bids" # take care - should end without the last "/"
# subject_id <- "sub-(AD|ADHC|BRP|BRPHC)[:digit:]{5}/"
## bidirect data
BIDS_folder <- "/mnt/Storage1/bidirect_processing/BIDS/derivatives_temp/FSL/TBSS_mahi_0_059375/" # take care - should end without the last "/"
subject_id <- "sub-[:digit:]{5}/"
BIDS_folder <- normalizePath(BIDS_folder)
# this file is in FSL folder!
b02b0_cnf <- "/usr/local/fsl/src/topup/flirtsch/b02b0.cnf"
source("dwi_processing/filenames/filenames.R", local = TRUE)
```
# Preparing
Calculate index.txt, if it does not exist
```{r}
path_to_folder(index)
# Create Index file if it does not exists
if(!file.exists(index)){
dwi_length_bvals <- dwi_bval[1] %>%
read.table(header = FALSE, sep = "", dec = ".") %>%
length()
index_txt <- rep(1, dwi_length_bvals)
write_lines(x = index_txt,
file = index,
sep = " ")
index %>% read.table(header = FALSE, sep = "", dec = ".")
}
```
acqparams.txt
this file is sequence and user specific and needs to be added manually!
needs to be in the bids/derived/TRIC_dwi_pipeline/params folder
```{r}
acqparams %>% read.table(header = FALSE, sep = "", dec = ".")
```
## DWI preprocessing
```{r}
source("dwi_processing/methods/0_dwi_preprocessing.R")
```
```{r}
source("dwi_processing/methods/1_dti_processing.R")
```
# TBSS like pipeline
## tbss FA
calculate TBSS for FA in the "3_tbss" folder
```{r}
source("dwi_processing/filenames/filenames_tbss.R")
source("dwi_processing/methods/2_TBSS_FA_processing.R")
```
## tbss non-FA
first copies the folder and content "tbss" from "3_tbss" to "4_nonFA".
Calculate the AD, RD files.
- AD is L1.
- RD is calculated from L2 and L3
Put AD, RD and MD into folders "AD" or "RD" or "MD".
And rename them to FA.
Run TBSS on the whole folder.
Now the output should be in the "stats" folder.
```{r}
source("dwi_processing/methods/3_TBSS_nonFA_processing.R")
```
# ROI extraction
```{r}
source("dwi_processing/filenames/filenames_extraction.R")
```
```{r}
# inputs
atlas <- "/usr/local/fsl/data/atlases/JHU/JHU-ICBM-labels-1mm.nii.gz" # exact path to atlas
label_file <- "/usr/local/fsl/data/atlases/JHU-labels.xml" # exact path to labels to atlas
atlas_prefix <- "JHU" # custom label of the atlas.
```
```{r}
# whole-brain - unmasked
# frontal, temporal, parietal, occipital
# roi-based
source("dwi_processing/methods/4_md_fa_extraction.R")
```
```{r}
source("dwi_processing/methods/5_readout_FA_MD_RD_AD.R")
```
# GLM Analysis
glmgui: "Glm"
## GLM Design definieren.
```{r}
stats_nonfa_directory <- paste0(output_tbss_nonfa, "/stats")
tbss_all(input_directory = stats_nonfa_directory,
input_command = "randomise -i all_FA_skeletonised -o tbss -m mean_FA_skeleton_mask -d design.mat -t design.con -n 500 --T2 -V")
randomise_fa_in <- list.files(stats_nonfa_directory, "^tbss", full.names = TRUE)
randomise_fa_out <- str_replace(randomise_fa_in, "nonFA/tbss/stats/tbss", "randomise/FA/tbss")
path_to_folder(randomise_fa_out)
file.rename(randomise_fa_in, randomise_fa_out)
```
```{r}
tbss_all(input_directory = stats_nonfa_directory,
input_command = "randomise -i all_MD_skeletonised -o tbss -m mean_FA_skeleton_mask -d design.mat -t design.con -n 500 --T2 -V")
randomise_fa_in <- list.files(stats_nonfa_directory, "^tbss", full.names = TRUE)
randomise_fa_out <- str_replace(randomise_fa_in, "nonFA/tbss/stats/tbss", "randomise/MD/tbss")
path_to_folder(randomise_fa_out)
file.rename(randomise_fa_in, randomise_fa_out)
```
```{r}
tbss_all(input_directory = stats_nonfa_directory,
input_command = "randomise -i all_RD_skeletonised -o tbss -m mean_FA_skeleton_mask -d design.mat -t design.con -n 500 --T2 -V")
randomise_fa_in <- list.files(stats_nonfa_directory, "^tbss", full.names = TRUE)
randomise_fa_out <- str_replace(randomise_fa_in, "nonFA/tbss/stats/tbss", "randomise/RD/tbss")
path_to_folder(randomise_fa_out)
file.rename(randomise_fa_in, randomise_fa_out)
```
```{r}
tbss_all(input_directory = stats_nonfa_directory,
input_command = "randomise -i all_AD_skeletonised -o tbss -m mean_FA_skeleton_mask -d design.mat -t design.con -n 500 --T2 -V")
randomise_fa_in <- list.files(stats_nonfa_directory, "^tbss", full.names = TRUE)
randomise_fa_out <- str_replace(randomise_fa_in, "nonFA/tbss/stats/tbss", "randomise/AD/tbss")
path_to_folder(randomise_fa_out)
file.rename(randomise_fa_in, randomise_fa_out)
```
## randomise -i \<4D_input_data\> -o <output_rootname> -d design.mat -t
design.con -m <mask_image> -n 500 -D -T
```{r}
command14 <- paste0("tbss_fill", tbss_clustere_corrp_tstat1,
" 0.949", mean_FA, tbss_clustere_corrp_tstat1_filled)
print(command14)
lapply(command14, system)
```
## tbss_fill tbss_clustere_corrp_tstat1 0.949 mean_FA
tbss_clustere_corrp_tstat1_filled