-
Notifications
You must be signed in to change notification settings - Fork 1
/
layers.py
119 lines (96 loc) · 3.89 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from initializations import *
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs
"""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def dropout_sparse(x, keep_prob, num_nonzero_elems):
"""Dropout for sparse tensors. Currently fails for very large sparse tensors (>1M elements)
"""
noise_shape = [num_nonzero_elems]
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
# Properties
name: String, defines the variable scope of the layer.
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.issparse = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
outputs = self._call(inputs)
return outputs
class GraphConvolution(Layer):
"""Basic graph convolution layer for undirected graph without edge labels."""
def __init__(self, input_dim, output_dim, adj, dropout=0., act=tf.nn.relu, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name="weights")
self.dropout = dropout
self.adj = adj
self.act = act
def _call(self, inputs):
x = inputs
x = tf.matmul(x, self.vars['weights'])
x = tf.matmul(self.adj, x)
outputs = self.act(x)
return outputs
class GraphConvolutionSparse(Layer):
"""Graph convolution layer for sparse inputs."""
def __init__(self, input_dim, output_dim, adj, features_nonzero, dropout=0., act=tf.nn.relu, **kwargs):
super(GraphConvolutionSparse, self).__init__(**kwargs)
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name="weights")
self.dropout = dropout
self.adj = adj
self.act = act
self.issparse = True
def _call(self, inputs):
x = inputs
x = tf.sparse_tensor_dense_matmul(x, self.vars['weights'])
x = tf.sparse_tensor_dense_matmul(self.adj, x)
outputs = self.act(x)
return outputs
class InnerProductDecoder(Layer):
"""Decoder model layer for link prediction."""
def __init__(self, input_dim, dropout=0., act=tf.nn.sigmoid, **kwargs):
super(InnerProductDecoder, self).__init__(**kwargs)
self.dropout = dropout
self.act = act
def _call(self, inputs):
inputs = tf.nn.dropout(inputs, 1-self.dropout)
x = tf.transpose(inputs)
x = tf.matmul(inputs, x)
x = tf.reshape(x, [-1])
outputs = self.act(x)
return outputs