-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster_sample.tex
216 lines (183 loc) · 7.74 KB
/
poster_sample.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
\documentclass[final,t]{beamer}
\mode<presentation>{\usetheme{PICB}}
% additional settings
%\setbeamerfont{itemize}{size=\normalsize}
%\setbeamerfont{itemize/enumerate body}{size=\normalsize}
%\setbeamerfont{itemize/enumerate subbody}{size=\normalsize}
% additional packages
\usepackage{helvet}
\usepackage{amsmath,amsthm, amssymb, latexsym}
\usepackage{exscale}
%\boldmath
\usepackage{booktabs, array}
%\usepackage{rotating} %sideways environment
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage[orientation=portrait,size=a0,scale=1.4]{beamerposter}
\usepackage[orientation=portrait,size=a1]{beamerposter}
\listfiles
\graphicspath{{figures/}}
% Display a grid to help align images
% \beamertemplategridbackground[1cm]
\title{A Unifying Theory for\\[0.4ex]Experimental Symbolomics}
\author[Sample et al.]{John Sample, Mike Test and Mary Try}
\institute[PICB Shanghai]{Research Group for Experimental Symbolomics\\[0.4ex]
CAS-MPG Partner Institute and Key Laboratory for Computational Biology\\[0.4ex]
Shanghai Institutes for Biological Sciences, Shanghai, China}
\date[Aug. 31 , 2009]{Aug. 31 , 2009}
\newcommand{\footlinetext}{Contact: \{johnsample,miketest,marytry\}@picb.ac.cn
\hfill Homepage: http://www.picb.ac.cn/Symbolomics}
% abbreviations
\usepackage{xspace}
\makeatletter
\DeclareRobustCommand\onedot{\futurelet\@let@token\@onedot}
\def\@onedot{\ifx\@let@token.\else.\null\fi\xspace}
\def\eg{{e.g}\onedot} \def\Eg{{E.g}\onedot}
\def\ie{{i.e}\onedot} \def\Ie{{I.e}\onedot}
\def\cf{{c.f}\onedot} \def\Cf{{C.f}\onedot}
\def\etc{{etc}\onedot}
\def\vs{{vs}\onedot}
\def\wrt{w.r.t\onedot}
\def\dof{d.o.f\onedot}
\def\etal{{et al}\onedot}
\makeatother
\begin{document}
\begin{frame}{}
\begin{columns}[t] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{column}{.45\linewidth}
\begin{block}{Overview}
Sample poster with a more flexible/complex/interesting
variant of the basic layout.
\end{block}
\end{column}
\begin{column}{.45\linewidth}
\begin{block}{Introduction}
\begin{itemize}
\item automatic sign language recognition system %what
\item \alert{necessary for communication} between deaf and
hearing people
\item \alert{continuous} sign language recognition,
\alert{several} speakers, \alert{vision-based} approach, \alert{no
special hardware}
\item large vocabulary speech recognition (LVSR) system to
obtain a textual representation of the signed
sentences
\item evaluation of speech recognition techniques on \alert{publicly
available sign language
corpus}
\end{itemize}
\end{block}
\end{column}
\end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[t] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{column}{.7\linewidth}
\begin{block}{Automatic Sign Language Recognition (ASLR)}
\begin{columns}[T] %--------------------------------
\begin{column}{.49\linewidth}
\begin{itemize}
\item \alert{similar to speech recognition}: temporal sequences of images
\item important features
\begin{itemize}
\item hand-shapes, facial expressions, lip-patterns
\item orientation and movement of the hands, arms or body
\end{itemize}
\item HMMs are used to compensate time and amplitude variations of the signers\par
\vskip2ex
\end{itemize}
\end{column}
\begin{column}{.49\linewidth}
\begin{itemize}
\item \alert{goal:} find the model which best expresses the observation sequence
\end{itemize}
\vskip2ex
\end{column}
\end{columns} %--------------------------------
\end{block}
\begin{block}{Experimental Setup}
\begin{columns}[t] %--------------------------------
\begin{column}{.5\linewidth}
\noindent{\hskip1cm\textbf{Database}}
\begin{itemize}
\item system evaluation on the RWTH-BOSTON-104 database
\begin{itemize}
\item \alert{201 sentences} (161 training and 40 test sequences)
\item vocabulary size of \alert{104 words}
\item 3 speakers (2 female, 1 male)
\item corpus is annotated in glosses
\end{itemize}
\end{itemize}
\vskip1ex
\noindent{\hskip1cm\textbf{Problems}}
\begin{itemize}
\item 26\% of the training data are \alert{singletons}
\item simple sentence structure
\item one out-of-vocabulary (OOV) words with whole-word models
\end{itemize}
\vskip1ex
\noindent{\hskip1cm\textbf{Differences in Comparison to ASR}}
\begin{itemize}
\item simultaneousness % multi-channel ... but unclear if necessary
\item signing space % verb flexion, negation, ...
\item environment % cluttered background, clothes, lighting, ... different microphones in ASR?
\item speakers and dialects % as in ASR
\item coarticulation and movement epenthesis %
\item silence % unclear as there might be no energy changes in signal but still information, e.g. holded signs
\item whole-word models and sub-word units % necessary for large-vocabulary systems
\end{itemize}
\end{column}
\begin{column}{.5\linewidth}
\vskip0ex
\centering
\includegraphics[width=\textwidth]{figure1.png}
\end{column}
\end{columns} %--------------------------------
\end{block}
\end{column}
\begin{column}{.2\linewidth}
\begin{block}{System Overview}
\vfill
\noindent{\textbf{Visual Modeling (VM)}}
\begin{itemize}
\item related to the acoustic model in ASR
\item HMM based, with separate GMMs, globally pooled diag. covariance matrix
\item monophone whole-word models
\item pronunciation handling
\end{itemize}
\vskip1ex
\noindent{\textbf{Language Modeling (LM)}}
\begin{itemize}
\item according to ASR: LM should have a greater weight than the VM
\item trigram LM using the SRILM toolkit, with modified Kneser-Ney discounting with interpolation
\end{itemize}
\end{block}
\end{column}
\end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{column}{.45\linewidth}
\begin{block}{Feature Selection and Model Combination}
\noindent{\hskip1cm\textbf{Feature Selection}}\par
\begin{itemize}
\item \alert{concatenation} of appearance-based and manual features
\item \alert{sliding window} for context modeling
\item \alert{dimensionality reduction} by PCA and/or LDA
\end{itemize}
\end{block}
\end{column}
\begin{column}{.45\linewidth}
\begin{block}{Model Combination}
\begin{itemize}
\item \alert{log-linear combination} of independently
trained models
\item profit from independent alignments (\eg performing
well for long and short words)
\item profit from different feature extraction approaches
\end{itemize}
\end{block}
\end{column}
\end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{frame}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-PDF-mode: t
%%% End: