-
Notifications
You must be signed in to change notification settings - Fork 29
/
fid_utils.py
41 lines (30 loc) · 1.48 KB
/
fid_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from scipy import linalg
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
print('fid calculation produces singular product; adding %s to diagonal of cov estimates' % eps)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * np.trace(covmean)
def calculate_fid_given_features(feature1, feature2):
mu1 = np.mean(feature1, axis=0)
sigma1 = np.cov(feature1, rowvar=False)
mu2 = np.mean(feature2, axis=0)
sigma2 = np.cov(feature2, rowvar=False)
fid_value = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
return fid_value