-
Notifications
You must be signed in to change notification settings - Fork 8
/
test.lua
130 lines (111 loc) · 3.42 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
-- usage: DATA_ROOT=/path/to/data/ name=expt1 which_direction=BtoA th test.lua
--
-- code derived from https://github.com/soumith/dcgan.torch and https://github.com/phillipi/pix2pix
require 'image'
require 'nn'
require 'nngraph'
require 'models.architectures'
require 'models.multistyle_architectures'
util = paths.dofile('util/util.lua')
options = require 'options'
opt = options.parse_options('test')
-- initialize torch GPU/CPU mode
if opt.gpu > 0 then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpu)
print ("GPU Mode")
torch.setdefaulttensortype('torch.CudaTensor')
else
torch.setdefaulttensortype('torch.FloatTensor')
print ("CPU Mode")
end
-- set batch/instance normalization
set_normalization(opt.norm)
-- setup visualization
visualizer = require 'util/visualizer'
function TableConcat(t1,t2)
for i=1,#t2 do
t1[#t1+1] = t2[i]
end
return t1
end
-- load data
local data_loader = nil
if opt.align_data > 0 then
require 'data.aligned_data_loader'
data_loader = AlignedDataLoader()
else
require 'data.unaligned_data_loader'
data_loader = UnalignedDataLoader()
end
print( "DataLoader " .. data_loader:name() .. " was created.")
data_loader:Initialize(opt)
if opt.how_many == 'all' then
opt.how_many = data_loader:size()
end
opt.how_many = math.min(opt.how_many, data_loader:size())
-- set batch/instance normalization
set_normalization(opt.norm)
-- load model
opt.continue_train = 1
-- define model
print(opt.model)
if opt.model=='gatedgan_test' then
require 'models.test_gatedgan_model'
model= TestGatedGANModel()
else
error('Please specify a correct model')
end
model:Initialize(opt)
local pathsA = {} -- paths to images A tested on
local pathsB = {} -- paths to images B tested on
local web_dir = paths.concat(opt.results_dir, opt.name .. '/' .. opt.which_epoch .. '_' .. opt.phase)
paths.mkdir(web_dir)
local image_dir = paths.concat(web_dir, 'images')
paths.mkdir(image_dir)
s1 = opt.fineSize
s2 = opt.fineSize / opt.aspect_ratio
visuals = {}
for n = 1, math.floor(opt.how_many) do
print('processing batch ' .. n)
local cur_dataA, cur_dataB, cur_pathsA, cur_pathsB = data_loader:GetNextBatch()
cur_pathsA = util.basename_batch(cur_pathsA)
cur_pathsB = util.basename_batch(cur_pathsB)
print('pathsA', cur_pathsA)
print('pathsB', cur_PathsB)
model:Forward({real_A=cur_dataA, real_B=cur_dataB}, opt, n)
visuals = model:GetCurrentVisuals(opt, opt.fineSize)
for i,visual in ipairs(visuals) do
if opt.resize_or_crop == 'scale_width' or opt.resize_or_crop == 'scale_height' then
s1 = nil
s2 = nil
end
visualizer.save_images(visual.img, paths.concat(image_dir, visual.label), {string.gsub(cur_pathsA[1],'.jpg','.png')}, s1, s2)
end
print('Saved images to: ', image_dir)
pathsA = TableConcat(pathsA, cur_pathsA)
pathsB = TableConcat(pathsB, cur_pathsB)
end
labels = {}
for i,visual in ipairs(visuals) do
table.insert(labels, visual.label)
end
-- make webpage
io.output(paths.concat(web_dir, 'index.html'))
io.write('<table style="text-align:center;">')
io.write('<tr><td> Image </td>')
for i = 1, #labels do
io.write('<td>' .. labels[i] .. '</td>')
end
io.write('</tr>')
for n = 1,math.floor(opt.how_many) do
io.write('<tr>')
io.write('<td>' .. tostring(n) .. '</td>')
for j = 1, #labels do
label = labels[j]
io.write('<td><img src="./images/' .. label .. '/' .. string.gsub(pathsA[n],'.jpg','.png') .. '"/></td>')
end
io.write('</tr>')
end
io.write('</table>')