forked from mila-iqia/blocks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
48 lines (44 loc) · 1.79 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import blocks
from codecs import open
from os import path
from setuptools import find_packages, setup
here = path.abspath(path.dirname(__file__))
with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
while not f.readline().startswith('Blocks'): # Skip the badges
pass
long_description = 'Blocks\n' + f.read().strip()
exec_results = {}
with open(path.join(path.dirname(__file__), 'blocks/version.py')) as file_:
exec(file_.read(), exec_results)
version = exec_results['version']
setup(
name='blocks',
version=version,
description='A Theano framework for building and training neural networks',
long_description=long_description,
url='https://github.com/mila-udem/blocks',
author='University of Montreal',
license='MIT',
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Image Recognition',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
],
keywords='theano machine learning neural networks deep learning',
packages=find_packages(exclude=['examples', 'docs', 'doctests', 'tests']),
scripts=['bin/blocks-continue'],
setup_requires=['numpy'],
install_requires=['numpy', 'six', 'pyyaml', 'toolz', 'theano',
'picklable-itertools', 'progressbar2', 'fuel'],
extras_require={
'test': ['mock', 'nose', 'nose2'],
'docs': ['sphinx', 'sphinx-rtd-theme']
},
zip_safe=False)