-
Notifications
You must be signed in to change notification settings - Fork 5
/
demoMUUFL.py
308 lines (245 loc) · 12 KB
/
demoMUUFL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import argparse
import time
import sys
import os
from HyperFunctions import *
from opsfrac import *
import tensorflow as tf
from tf_octConv import *
parser = argparse.ArgumentParser()
parser.add_argument('--conv_size',
type=int,
default=15,
help='size of kernel')
parser.add_argument('--order',
type=int,
default=25,
help='fractional order')
parser.add_argument('--lr',
type=int,
default=100,
help='learning rate')
parser.add_argument('--alpha',
type=int,
default=2,
help='alpha of octave')
parser.add_argument('--numsample',
type=int,
default=100,
help='number of training samples')
args = parser.parse_args()
conv_size = args.conv_size
order = args.order*0.01
lr=args.lr*0.00001
AlphaSet=args.alpha*0.1
num_sample=args.numsample
num_epoch =2000
resultpath = './results20200601/FGCN/muufl/order/'+"conv %g, order %g, lr %g, alpha %g, sam %g/"%(conv_size, order, lr, AlphaSet, num_sample)
if not os.path.isdir(resultpath):
os.makedirs(resultpath)
Xpath='./DataSets/muufl.mat'
Xname='muufl'
Xshape=[1,326,220,64]
Xbands=64
XLpath='./DataSets/muuflL.mat'
XLname='muuflL'
XLshape=[1,326,220,2]
XLbands=2
Ypath='./DataSets/muufl_gt.mat'
Yname='muufl_gt'
Yshape=[1,326,220,11]
nclass=11
f = [1., 1./2, 1./3, 1./4]
filter_size_1 = [conv_size, conv_size, 64, 16]
gf_1 = gen_gf_list(filter_size_1, f, order)
gf_2 = gen_gf_list(filter_size_1, f, order)
gf_3 = gen_gf_list(filter_size_1, f, order)
filter_1 = filter_variable("filter_1",filter_size_1)
def weight_variable(shape,name=None):
initial = tf.random_uniform(shape,minval=0.01, maxval=0.02)
return tf.Variable(initial,name)
def weight(name=None):
initial = tf.random_uniform([1],minval=1, maxval=2)
return tf.Variable(initial,name)
def bias_variable(shape,name=None):
initial = tf.constant(0., shape=shape)
return tf.Variable(initial,name=None)
def conv2d(x, W, p=0):
if p==1:
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
else:
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')
def atrousconv2d(x,W,rate):
return tf.nn.atrous_conv2d(x, W,rate,padding='SAME')
def max_pool(x,W,p=0):
if p==1:
return tf.nn.max_pool(x, ksize=[1, W, W, 1],
strides=[1, W, W, 1], padding='SAME')
else:
return tf.nn.max_pool(x, ksize=[1, W, W, 1],
strides=[1, W, W, 1], padding='VALID')
def max_pool_padding(x,W):
return tf.nn.max_pool(x, ksize=[1, W, W, 1],
strides=[1, 1, 1, 1], padding='SAME')
def avg_pool_padding(x,W):
return tf.nn.avg_pool(x, ksize=[1, W, W, 1],
strides=[1, 1, 1, 1], padding='SAME')
def one_hot3d(Y):
num_class = np.max(Y)
row,col = Y.shape
y = np.zeros((row,col,num_class),'uint8')
for i in range(1,num_class+1):
index = np.where(Y==i)
y[index[0],index[1],i-1] = 1
return y
x = tf.placeholder(tf.float32, shape=Xshape)
xl = tf.placeholder(tf.float32, shape=XLshape)
y_ = tf.placeholder(tf.float32, shape=Yshape)
idx1 = tf.placeholder(tf.int32, shape=None)
idx2 = tf.placeholder(tf.int32, shape=None)
idx3 = tf.placeholder(tf.int32, shape=None)
W_spectral_conv1 = weight_variable([1,1, Xbands, 64],'W_spectral_conv1')
b_spectral_conv1 = bias_variable([Xbands],'b_spectral_conv1')
h_spectral_conv1 = tf.nn.relu(conv2d(x, W_spectral_conv1,1) + b_spectral_conv1)
h_spectral_conv1 = tf.nn.dropout(h_spectral_conv1,0.3)
W_spectral_conv2 = weight_variable([1,1, 64, 64],'W_spectral_conv2')
b_spectral_conv2 = bias_variable([64],'b_spectral_conv2')
h_spectral_conv2 = tf.nn.relu(conv2d(h_spectral_conv1, W_spectral_conv2,1) + b_spectral_conv2)
h_spectral_conv2 = tf.nn.dropout(h_spectral_conv2,0.3)
W_spectral_conv3 = weight_variable([1,1,64,64],'W_spectral_conv3')
b_spectral_conv3 = bias_variable([64],'b_spectral_conv3')
h_spectral_conv3 = tf.nn.relu(conv2d(h_spectral_conv2,W_spectral_conv3,1) + b_spectral_conv3)
h_spectral_conv3 = tf.nn.dropout(h_spectral_conv3,0.3)
h_spectral = tf.concat([h_spectral_conv1,h_spectral_conv2,h_spectral_conv3],3)
stride=(1, 1)
hf_data_m, lf_data_m = firstOctConv_BN_AC(data=x, alpha=AlphaSet, num_filter_in=Xbands, num_filter_out=Xbands, kernel=( 1, 1), pad='valid')
hf_data_ml, lf_data_ml = firstOctConv_BN_AC(data=xl, alpha=AlphaSet, num_filter_in=XLbands, num_filter_out=Xbands, kernel=( 1, 1), pad='valid')
hf_data_merge1=tf.concat([hf_data_m, hf_data_ml],3)
lf_data_merge1=tf.concat([lf_data_m, lf_data_ml],3)
merge1, merge2 = octConv_BN_AC(hf_data=hf_data_merge1, lf_data=lf_data_merge1, alpha=AlphaSet, num_filter_in=Xbands*2,num_filter_out=Xbands*2, kernel=(3, 3), pad='same',stride=stride)
lidar_dr_conv1 = lastOctConv_BN_AC(hf_data=merge1, lf_data=merge2, alpha=AlphaSet, num_filter_in=Xbands*2,num_filter_out=64, kernel=(3, 3), pad='same',stride=stride)
h_dr_conv1 = lidar_dr_conv1
b_spatial_conv1_1 = bias_variable([16],'b_spatial_conv1_1')
b_spatial_conv1_2 = bias_variable([16],'b_spatial_conv1_2')
b_spatial_conv1_3 = bias_variable([16],'b_spatial_conv1_3')
b_spatial_conv1_4 = bias_variable([16],'b_spatial_conv1_4')
h_spatial_conv1_1 = tf.nn.relu(atrousconv2d(h_dr_conv1, filter_1*gf_1[0],2) + b_spatial_conv1_1)
h_spatial_conv1_2 = tf.nn.relu(atrousconv2d(h_dr_conv1, filter_1*gf_1[1],2) + b_spatial_conv1_2)
h_spatial_conv1_3 = tf.nn.relu(atrousconv2d(h_dr_conv1, filter_1*gf_1[2],2) + b_spatial_conv1_3)
h_spatial_conv1_4 = tf.nn.relu(atrousconv2d(h_dr_conv1, filter_1*gf_1[3],2) + b_spatial_conv1_4)
h_spatial_conv1 = tf.concat([h_spatial_conv1_1,h_spatial_conv1_2,h_spatial_conv1_3,h_spatial_conv1_4],3)
h_spatial_conv1 = tf.nn.relu(h_spatial_conv1)
h_spatial_conv1 = tf.nn.dropout(h_spatial_conv1,0.3)
h_spatial_pool1 = max_pool_padding(h_spatial_conv1,2)
b_spatial_conv2_1 = bias_variable([16],'b_spatial_conv2_1')
b_spatial_conv2_2 = bias_variable([16],'b_spatial_conv2_2')
b_spatial_conv2_3 = bias_variable([16],'b_spatial_conv2_3')
b_spatial_conv2_4 = bias_variable([16],'b_spatial_conv2_4')
h_spatial_conv2_1 = tf.nn.relu(atrousconv2d(h_spatial_pool1,filter_1*gf_2[0],2) + b_spatial_conv2_1)
h_spatial_conv2_2 = tf.nn.relu(atrousconv2d(h_spatial_pool1,filter_1*gf_2[1],2) + b_spatial_conv2_2)
h_spatial_conv2_3 = tf.nn.relu(atrousconv2d(h_spatial_pool1,filter_1*gf_2[2],2) + b_spatial_conv2_3)
h_spatial_conv2_4 = tf.nn.relu(atrousconv2d(h_spatial_pool1,filter_1*gf_2[3],2) + b_spatial_conv2_4)
h_spatial_conv2 = tf.concat([h_spatial_conv2_1,h_spatial_conv2_2,h_spatial_conv2_3,h_spatial_conv2_4],3)
h_spatial_conv2 = tf.nn.relu(h_spatial_conv2)
h_spatial_conv2 = tf.nn.dropout(h_spatial_conv2,0.3)
h_spatial_pool2 = max_pool_padding(h_spatial_conv2,2)
b_spatial_conv3_1 = bias_variable([16],'b_spatial_conv3_1')
b_spatial_conv3_2 = bias_variable([16],'b_spatial_conv3_2')
b_spatial_conv3_3 = bias_variable([16],'b_spatial_conv3_3')
b_spatial_conv3_4 = bias_variable([16],'b_spatial_conv3_4')
h_spatial_conv3_1 = tf.nn.relu(atrousconv2d(h_spatial_pool2,filter_1*gf_3[0],2) + b_spatial_conv3_1)
h_spatial_conv3_2 = tf.nn.relu(atrousconv2d(h_spatial_pool2,filter_1*gf_3[1],2) + b_spatial_conv3_2)
h_spatial_conv3_3 = tf.nn.relu(atrousconv2d(h_spatial_pool2,filter_1*gf_3[2],2) + b_spatial_conv3_3)
h_spatial_conv3_4 = tf.nn.relu(atrousconv2d(h_spatial_pool2,filter_1*gf_3[3],2) + b_spatial_conv3_4)
h_spatial_conv3 = tf.concat([h_spatial_conv3_1,h_spatial_conv3_2,h_spatial_conv3_3,h_spatial_conv3_4],3)
h_spatial_conv3 = tf.nn.relu(h_spatial_conv3)
h_spatial_conv3 = tf.nn.dropout(h_spatial_conv3,0.3)
h_spatial_pool3 = max_pool_padding(h_spatial_conv3,2)
h_spatial = tf.concat([h_spatial_pool1, h_spatial_pool2, h_spatial_pool3],3)# h_spatial_pool3
W_spatial = weight('W_spatial')
W_spectral = weight('W_spectral')
h_SS = W_spatial*h_spatial + W_spectral*h_spectral
W_conv5 = weight_variable([1,1, 192, 64],'W_conv5')
b_conv5 = bias_variable([64],'b_conv5')
y_conv = tf.nn.relu(conv2d(h_SS, W_conv5,1) + b_conv5)
W_conv6 = weight_variable([1,1, 64, nclass],'W_conv6')
b_conv6 = bias_variable([nclass],'b_conv6')
y_conv = tf.nn.relu(conv2d(y_conv, W_conv6,1) + b_conv6)
y_prob = tf.nn.softmax(y_conv)
y_label = tf.argmax(y_prob,-1)
indices = tf.stack([idx3,idx1,idx2], axis=1)
y_conv_mask = tf.gather_nd(y_conv, indices)
y_mask = tf.gather_nd(y_, indices)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=y_conv_mask, labels=y_mask))
train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv_mask,-1), tf.argmax(y_mask,-1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
X = sio.loadmat(Xpath)[Xname].astype('float32')
XL = sio.loadmat(XLpath)[XLname].astype('float32')
Y = sio.loadmat(Ypath)[Yname]
row,col,n_band = X.shape
Lrow,Lcol,Ln_band = XL.shape
X = np.reshape(featureNormalize(np.reshape(X,-1),2),(row,col,n_band))
XL = np.reshape(featureNormalize(np.reshape(XL,-1),2),(Lrow,Lcol,Ln_band))
num_class = np.max(Y)
Y_train = np.zeros(Y.shape).astype('int')
n_sample_train = 0
n_sample_test = 0
FCN_joint = np.zeros((num_class+4))
#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.666) config=tf.ConfigProto(gpu_options=gpu_options)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1,num_class+1):
index = np.where(Y==i)
n_sample = len(index[0])
array = np.random.permutation(n_sample)
n_per = num_sample
if i==1:
array1_train = index[0][array[:n_per]]
array2_train = index[1][array[:n_per]]
array1_test = index[0][array[n_per:]]
array2_test = index[1][array[n_per:]]
else:
array1_train = np.concatenate((array1_train,index[0][array[:n_per]]))
array2_train = np.concatenate((array2_train,index[1][array[:n_per]]))
array1_test = np.concatenate((array1_test,index[0][array[n_per:]]))
array2_test = np.concatenate((array2_test,index[1][array[n_per:]]))
Y_train[index[0][array[:n_per]],index[1][array[:n_per]]] = i
n_sample_train += n_per
n_sample_test += n_sample-n_per
array3 = np.zeros(array1_train.shape)
y_train = one_hot3d(Y_train)
y_train = np.reshape(y_train,(1,row,col,num_class))
X_train = np.reshape(X,(1,row,col,n_band))
XL_train = np.reshape(XL,(1,Lrow,Lcol,Ln_band))
mask_train = np.zeros(y_train.shape)
for i in range(num_class):
mask_train[:,:,:,i] = np.sum(y_train,-1)
time1 = time.time()
histloss = np.zeros((num_epoch,2))
for i in range(num_epoch):
train_accuracy = 0
train_loss = 0
sess.run(train_step,feed_dict={x:X_train,xl:XL_train,y_:y_train,idx1:array1_train,idx2:array2_train,idx3:array3})
if (i+1)%100==0:
train_accuracy,train_loss = sess.run([accuracy,cross_entropy],feed_dict={x:X_train,xl:XL_train,y_:y_train,idx1:array1_train,idx2:array2_train,idx3:array3})
histloss[i,:] = train_accuracy,train_loss
print("epoch %d, train_accuracy %g, train_loss %g"%(i+1, histloss[i,0],histloss[i,1]))
time2 = time.time()
label = np.squeeze(sess.run(y_label,feed_dict={x:X_train,xl:XL_train,y_: y_train,idx1:array1_train,idx2:array2_train,idx3:array3}))
prob = np.squeeze(sess.run(y_prob,feed_dict={x:X_train,xl:XL_train,y_: y_train,idx1:array1_train,idx2:array2_train,idx3:array3}))
y_test = Y[array1_test,array2_test]-1
y_pred = label[array1_test,array2_test]
OA,kappa,ProducerA = CalAccuracy(y_pred,y_test)
print("OA %g, kappa %g"%(OA, kappa))
FCN_joint[:num_class] = ProducerA
FCN_joint[-4] = OA
FCN_joint[-3] = kappa
time3 = time.time()
FCN_joint[-2] = time2 - time1
FCN_joint[-1] = time3 - time2
print("Running time: %g"%(FCN_joint[-1]))
# sio.savemat(resultpath+'prob.mat', {'FCN_joint': prob})
# sio.savemat(resultpath+'label.mat', {'FCN_joint': label})
# sio.savemat(resultpath+repr(int(OA*10000))+'result.mat', {'FCN_joint': FCN_joint})