PyTorch implementation for LB-UNet: A Lightweight Boundary-assisted UNet for Skin Lesion Segmentation (LB-UNet) (MICCAI 2024)
-
torch 2.1.0
-
torchvision 0.16.0
-
python 3.8.0
The dataset utilizes the preprocessed datasets provided by EGE-UNet from Google Drive.
The boundary maps that you can generate using boundary.py
or download from Google Drive.
ISIC2017, ISIC2018.
-
Update the input and output paths for
Boundary.py
to align with the directory structure ofdataset.py
. -
Run
Boundary.py
to generate boundary maps. -
Update the data_path configuration in
config_setting.py
. -
Run
train.py
to train the model.