First of all, train.T
and eval.T
denote preprocessing for training and for evaluation, respectively.
Here we list non-obvious parameters.
Main part:
seed = 0
-- evaluation seed (and training, but for training it is fixed to 0)parent_dir = "exp/abalone/check"
-- exp folderreal_data_path = "data/abalone/"
model_type = "mlp"
-- model type that approximates the reverse processnum_numerical_features
-- a number of numerical features in datasetdevice = "cuda:0"
Model params:
is_y_cond
-- false for regression, true for classificationd_in
-- input dimension (not necessary, since scripts calculate it automatically)num_calsses
-- zero for regression, a number of classes for classificationrtdl_params
-- MLP parameters
seed = 0
parent_dir = "exp/abalone/check"
real_data_path = "data/abalone/"
model_type = "mlp"
num_numerical_features = 7
device = "cuda:0"
[model_params]
is_y_cond = false
d_in = 11
num_classes = 0
[model_params.rtdl_params]
d_layers = [
256,
256,
]
dropout = 0.0
[diffusion_params]
num_timesteps = 1000
gaussian_loss_type = "mse"
scheduler = "cosine"
[train.main]
steps = 1000
lr = 0.001
weight_decay = 1e-05
batch_size = 4096
[train.T]
seed = 0
normalization = "quantile"
num_nan_policy = "__none__"
cat_nan_policy = "__none__"
cat_min_frequency = "__none__"
cat_encoding = "__none__"
y_policy = "default"
[sample]
num_samples = 20800
batch_size = 10000
seed = 0
[eval.type]
eval_model = "catboost"
eval_type = "synthetic"
[eval.T]
seed = 0
normalization = "__none__"
num_nan_policy = "__none__"
cat_nan_policy = "__none__"
cat_min_frequency = "__none__"
cat_encoding = "__none__"
y_policy = "default"