Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

English | 简体中文

YOLOv8 Python Deployment Example

Two steps before deployment

This directory provides the example that infer.py fast finishes the deployment of YOLOv8 on CPU/GPU and GPU through TensorRT. The script is as follows

# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov8/python/

# Download yolov8 model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov8.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

# CPU inference
python infer.py --model yolov8.onnx --image 000000014439.jpg --device cpu
# GPU inference
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu
# TensorRT inference on GPU 
python infer.py --model yolov8.onnx --image 000000014439.jpg --device gpu --use_trt True

The visualized result is as follows

YOLOv8 Python Interface

fastdeploy.vision.detection.YOLOv8(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)

YOLOv8 model loading and initialization, among which model_file is the exported ONNX model format

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. No need to set when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

predict function

YOLOv8.predict(image_data)

Model prediction interface. Input images and output detection results

Parameter

  • image_data(np.ndarray): Input data in HWC or BGR format

Return

Return the fastdeploy.vision.DetectionResultstructure, refer to Vision Model Prediction Results for its description

Class Member Property

Pre-processing Parameter

Users can modify the following preprocessing parameters based on actual needs to change the final inference and deployment results

  • size(list[int]): This parameter changes the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
  • padding_value(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114]
  • is_no_pad(bool): Specify whether to resize the image through padding. is_no_pad=True represents no paddling. Default is_no_pad=False
  • is_mini_pad(bool): This parameter sets the width and height of the image after resize to the value nearest to the size member variable and to the point where the padded pixel size is divisible by the stride member variable. Default is_mini_pad=False
  • stride(int): Used with the stris_mini_padide member variable. Default stride=32

Other Documents