Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

English | 简体中文

UltraFace Python Deployment Example

Before deployment, two steps require confirmation

This directory provides examples that infer.py fast finishes the deployment of UltraFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/facedet/ultraface/python/

# Download ultraface model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/version-RFB-320.onnx
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg

# CPU inference
python infer.py --model version-RFB-320.onnx --image test_lite_face_detector_3.jpg --device cpu
# GPU inference
python infer.py --model version-RFB-320.onnx --image test_lite_face_detector_3.jpg --device gpu
# TensorRT inference on GPU 
python infer.py --model version-RFB-320.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True

The visualized result after running is as follows

UltraFace Python Interface

fastdeploy.vision.facedet.UltraFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)

UltraFace model loading and initialization, among which model_file is the exported ONNX model format

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. No need to set when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

predict function

UltraFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)

Model prediction interface. Input images and output detection results.

Parameter

  • image_data(np.ndarray): Input data in HWC or BGR format
  • conf_threshold(float): Filtering threshold of detection box confidence
  • nms_iou_threshold(float): iou threshold during NMS processing

Return

Return fastdeploy.vision.FaceDetectionResult structure. Refer to Vision Model Prediction Results for its description.

Class Member Property

Pre-processing Parameter

Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results

  • size(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [320, 240]

Other Documents