forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fill.cpp
171 lines (141 loc) · 4.77 KB
/
Fill.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Functions that fill Tensors with constants.
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/Fill.h>
#include <ATen/core/Tensor.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorIterator.h>
#include <ATen/TensorOperators.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/fill_diagonal_native.h>
#include <ATen/ops/fill_native.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/zero_native.h>
#endif
namespace at {
namespace native {
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fill ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tensor& fill_out(Tensor& self, const Scalar& value) {
if (self.device() == at::kCPU && self.numel() == 1) {
return at::detail::scalar_fill(self, value);
}
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false) // Fill is idempotent, so overlap is okay
.check_all_same_dtype(false)
.add_output(self)
.resize_outputs(false)
.build();
fill_stub(iter.device_type(), iter, value);
return self;
}
static Tensor& fill_out_quantized(Tensor& self, const Scalar& value) {
at::Tensor out = at::ones(self.sizes()).to(kFloat) * value;
out = out.to(self.device()).to(self.suggest_memory_format());
// Trust the `copy_` to handle the quantization and the boundary checks.
self.copy_(out);
return self;
}
Tensor& fill_(Tensor& self, const Scalar& value) {
return fill_out(self, value);
}
Tensor& fill_quantized_(Tensor& self, const Scalar& value) {
return fill_out_quantized(self, value);
}
Tensor& fill_(Tensor& self, const Tensor& value) {
TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ", value.dim(), " dimensions.");
if (self.device() != value.device()){
return fill_out(self, value.item());
}
// Check if value is a view of self and if it is we clone
// it to avoid overwriting self prematurely
if(self.is_alias_of(value)) {
self.copy_(value.clone());
} else{
self.copy_(value);
}
return self;
}
Tensor& fill_quantized_(Tensor& self, const Tensor& value) {
TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ", value.dim(), " dimensions.");
return fill_out_quantized(self, value.item());
}
Tensor& fill_meta_(Tensor& self, const Scalar& value) {
return self;
}
Tensor& fill_meta_(Tensor& self, const Tensor& value) {
TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ", value.dim(), " dimensions.");
return self;
}
Tensor fill(const Tensor& self, const Scalar& value) {
return at::empty_like(self).fill_(value);
}
Tensor fill(const Tensor& self, const Tensor& value) {
return at::empty_like(self).fill_(value);
}
DEFINE_DISPATCH(fill_stub);
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fill_diagonal ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tensor& fill_diagonal_(Tensor& self, const Scalar& fill_value, bool wrap) {
int64_t nDims = self.dim();
TORCH_CHECK(nDims >= 2, "dimensions must larger than 1");
int64_t height = self.size(0);
int64_t width = self.size(1);
if (nDims > 2) {
int64_t dim1 = height;
for (const auto i : c10::irange(1, nDims)) {
if (self.size(i) != dim1) {
AT_ERROR("all dimensions of input must be of equal length");
}
}
}
int64_t storage_offset = self.storage_offset();
std::vector<int64_t> sizes;
std::vector<int64_t> strides;
int64_t size = std::min(height, width);
int64_t stride = 0;
for (const auto i : c10::irange(nDims)) {
stride += self.stride(i);
}
strides.push_back(stride);
sizes.push_back(size);
auto main_diag = self.as_strided(sizes, strides, storage_offset);
main_diag.fill_(fill_value);
if (wrap && nDims == 2 && height > width + 1) {
std::vector<int64_t> wrap_sizes;
int64_t step = width + 1;
int64_t wrap_size = ((self.numel() + step - 1) / step) - size;
wrap_sizes.push_back(wrap_size);
int64_t offset = self.stride(0) * (width + 1);
auto wrap_diag = self.as_strided(wrap_sizes, strides, storage_offset + offset);
wrap_diag.fill_(fill_value);
}
return self;
}
static Tensor& zero_cpu_(Tensor &self, int64_t nelements) {
void* ptr = self.data_ptr();
if (nullptr == ptr) {
return self.fill_(0);
}
int64_t size_bytes = nelements * self.dtype().itemsize();
if (size_bytes > 0) {
std::memset(ptr, 0, size_bytes);
}
return self;
}
Tensor& zero_(Tensor &self) {
int64_t nelements = c10::multiply_integers(self.sizes());
if (self.device() == at::kCPU &&
self.is_non_overlapping_and_dense() &&
nelements < internal::GRAIN_SIZE) {
return zero_cpu_(self, nelements);
}
return self.fill_(0);
}
Tensor& zero_meta_(Tensor& self) {
return self;
}
} // namespace native
} // namespace at