这里用到的是YouTube-8M 2018年更新之后的数据集。使用官方数据集,并将TFRecord文件转化为pickle文件以便PaddlePaddle使用。Youtube-8M数据集官方提供了frame-level和video-level的特征,这里只需使用到frame-level的特征。
请使用Youtube-8M官方链接分别下载训练集和验证集。每个链接里各提供了3844个文件的下载地址,用户也可以使用官方提供的下载脚本下载数据。数据下载完成后,将会得到3844个训练数据文件和3844个验证数据文件(TFRecord格式)。 假设存放视频模型代码库的主目录为: Code_Root,进入dataset/youtube8m目录
cd dataset/youtube8m
在youtube8m下新建目录tf/train和tf/val
mkdir tf && cd tf
mkdir train && mkdir val
并分别将下载的train和validate数据存放在其中。
为了适用于PaddlePaddle训练,需要离线将下载好的TFRecord文件格式转成了pickle格式,转换脚本请使用dataset/youtube8m/tf2pkl.py。
在dataset/youtube8m 目录下新建目录pkl/train和pkl/val
cd dataset/youtube8m
mkdir pkl && cd pkl
mkdir train && mkdir val
转化文件格式(TFRecord -> pkl),进入dataset/youtube8m目录,运行脚本
python tf2pkl.py ./tf/train ./pkl/train
和
python tf2pkl.py ./tf/val ./pkl/val
分别将train和validate数据集转化为pkl文件。tf2pkl.py文件运行时需要两个参数,分别是数据源tf文件存放路径和转化后的pkl文件存放路径。
备注:由于TFRecord文件的读取需要用到Tensorflow,用户要先安装Tensorflow,或者在安装有Tensorflow的环境中转化完数据,再拷贝到dataset/youtube8m/pkl目录下。为了避免和PaddlePaddle环境冲突,建议先在其他地方转化完成再将数据拷贝过来。
进入dataset/youtube8m目录
ls $Code_Root/dataset/youtube8m/pkl/train/* > train.list
ls $Code_Root/dataset/youtube8m/pkl/val/* > val.list
在dataset/youtube8m目录下将生成两个文件,train.list和val.list,每一行分别保存了一个pkl文件的绝对路径。
Kinetics数据集是DeepMind公开的大规模视频动作识别数据集,有Kinetics400与Kinetics600两个版本。这里使用Kinetics400数据集,具体的数据预处理过程如下。
在Code_Root目录下创建文件夹
cd $Code_Root/dataset && mkdir kinetics
cd kinetics && mkdir data_k400 && cd data_k400
mkdir train_mp4 && mkdir val_mp4
ActivityNet官方提供了Kinetics的下载工具,具体参考其官方repo 即可下载Kinetics400的mp4视频集合。将kinetics400的训练与验证集合分别下载到dataset/kinetics/data_k400/train_mp4与dataset/kinetics/data_k400/val_mp4。
为提高数据读取速度,提前将mp4文件解帧并打pickle包,dataloader从视频的pkl文件中读取数据(该方法耗费更多存储空间)。pkl文件里打包的内容为(video-id,[frame1, frame2,...,frameN],label)。
在 dataset/kinetics/data_k400目录下创建目录train_pkl和val_pkl
cd $Code_Root/dataset/kinetics/data_k400
mkdir train_pkl && mkdir val_pkl
进入$Code_Root/dataset/kinetics目录,使用video2pkl.py脚本进行数据转化。首先需要下载train和validation数据集的文件列表。
首先生成预处理需要的数据集标签文件
python generate_label.py kinetics-400_train.csv kinetics400_label.txt
然后执行如下程序:
python video2pkl.py kinetics-400_train.csv $Source_dir $Target_dir 8 #以8个进程为例
- 该脚本依赖
ffmpeg
库,请预先安装ffmpeg
对于train数据,
Source_dir = $Code_Root/dataset/kinetics/data_k400/train_mp4
Target_dir = $Code_Root/dataset/kinetics/data_k400/train_pkl
对于val数据,
Source_dir = $Code_Root/dataset/kinetics/data_k400/val_mp4
Target_dir = $Code_Root/dataset/kinetics/data_k400/val_pkl
这样即可将mp4文件解码并保存为pkl文件。
cd $Code_Root/dataset/kinetics
ls $Code_Root/dataset/kinetics/data_k400/train_pkl /* > train.list
ls $Code_Root/dataset/kinetics/data_k400/val_pkl /* > val.list
即可生成相应的文件列表,train.list和val.list的每一行表示一个pkl文件的绝对路径。
Non-local模型也使用kinetics数据集,不过其数据处理方式和其他模型不一样,详细内容见Non-local数据说明