Distributed skorch on Ray Train
pip install ray-skorch
skorch-based wrapper for Ray Train. Experimental!
⚠️ RayTrainNeuralNet
and the rest of this package are experimental and not production ready. In particular, validation and error handling may be spotty. If you encounter any problems or have any suggestions please open an issue on GitHub.
We are looking for feedback! Please let us know about your experience using ray-skorch and about any suggestions and problems you may have by opening an issue. We are also interested in feedback on the concept of distributed training with scikit-learn(like) interfaces itself.
- Run
pip install -e .
to install necessary packages - Upon push, run
./format.sh
to make sure lint changes are applied appropriately. - The current working examples can be found in
examples
.
- Only numpy arrays, pandas dataframes and Ray Data Datasets are supported as inputs.
- Compatibility with scikit-learn hyperparameter tuners is not tested.
The only breaking API difference compared to skorch
is the addition of a new num_workers
argument, contolling how many Ray workers to use for training. Please refer to docstrings for more information on other changes.
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
from ray_skorch import RayTrainNeuralNet
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=nn.ReLU()):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, num_units)
self.output = nn.Linear(num_units, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = self.nonlin(self.dense1(X))
X = self.output(X)
return X
net = RayTrainNeuralNet(
MyModule,
num_workers=2, # the only new mandatory argument
criterion=nn.CrossEntropyLoss,
max_epochs=10,
lr=0.1,
# required for classification loss funcs
iterator_train__unsqueeze_label_tensor=False,
iterator_valid__unsqueeze_label_tensor=False,
)
net.fit(X, y)
# predict_proba returns a ray.data.Dataset
y_proba = net.predict_proba(X).to_pandas()
print(y_proba)
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from torch import nn
from ray.data import from_pandas
from ray_skorch import RayTrainNeuralNet
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = pd.DataFrame(X.astype(np.float32))
y = pd.Series(y.astype(np.int64))
X.columns = [str(colname) for colname in X.columns]
X_pred = X.copy()
X["target"] = y
X = from_pandas(X)
# ensure no target column is in data for prediction
X_pred = from_pandas(X_pred)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=nn.ReLU()):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, num_units)
self.output = nn.Linear(num_units, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = self.nonlin(self.dense1(X))
X = self.output(X)
return X
net = RayTrainNeuralNet(
MyModule,
num_workers=2, # the only new mandatory argument
criterion=nn.CrossEntropyLoss,
max_epochs=10,
lr=0.1,
# required for classification loss funcs
iterator_train__unsqueeze_label_tensor=False,
iterator_valid__unsqueeze_label_tensor=False,
)
net.fit(X, "target")
# predict_proba returns a ray.data.Dataset
y_proba = net.predict_proba(X_pred).to_pandas()
print(y_proba)