-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_instruction.py
233 lines (195 loc) · 9.53 KB
/
generate_instruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import time
import json
import os
import random
import re
import string
from functools import partial
from multiprocessing import Pool
import numpy as np
import tqdm
from rouge_score import rouge_scorer
import utils
import argparse
# prompt에 정의하 조건들과 사람이 정의한 instrcution 셋을 기준으로 N개의 task를 추가 생성하는 함수
def encode_prompt(prompt_instructions):
"""Encode multiple prompt instructions into a single string."""
# prompt.txt에는 task 생성 조건이 정의된다. 그리고 생성할 task 숫자도 정의된다.
prompt = open("./prompt.txt").read() + "\n"
for idx, task_dict in enumerate(prompt_instructions):
(instruction, input, output) = task_dict["instruction"], task_dict["input"], task_dict["output"]
instruction = re.sub(r"\s+", " ", instruction).strip().rstrip(":")
input = "<noinput>" if input.lower() == "" else input
prompt += f"###\n"
prompt += f"{idx + 1}. Instruction: {instruction}\n"
prompt += f"{idx + 1}. Input:\n{input}\n"
prompt += f"{idx + 1}. Output:\n{output}\n"
prompt += f"###\n"
prompt += f"{idx + 2}. Instruction:"
# 최종적으로는 [생성 조건 + 사람의 생성한 instruction]을 결합해서 최대 20개의 task를 생성하는 프롬프트 작성
return prompt
def post_process_gpt3_response(num_prompt_instructions, response):
if response is None:
return []
raw_instructions = f"{num_prompt_instructions+1}. Instruction:" + response["text"]
raw_instructions = re.split("###", raw_instructions)
instructions = []
for idx, inst in enumerate(raw_instructions):
# if the decoding stops due to length, the last example is likely truncated so we discard it
if idx == len(raw_instructions) - 1 and response["finish_reason"] == "length":
continue
idx += num_prompt_instructions + 1
splitted_data = re.split(f"{idx}\.\s+(Instruction|Input|Output):", inst)
if len(splitted_data) != 7:
continue
else:
inst = splitted_data[2].strip()
input = splitted_data[4].strip()
input = "" if input.lower() == "<noinput>" else input
output = splitted_data[6].strip()
# filter out too short or too long instructions
if len(inst.split()) <= 3 or len(inst.split()) > 150:
continue
# filter based on keywords that are not suitable for language models.
blacklist = [
"image",
"images",
"graph",
"graphs",
"picture",
"pictures",
"file",
"files",
"map",
"maps",
"draw",
"plot",
"go to",
"video",
"audio",
"music",
"flowchart",
"diagram",
]
blacklist += []
if any(find_word_in_string(word, inst) for word in blacklist):
continue
# We found that the model tends to add "write a program" to some existing instructions, which lead to a lot of such instructions.
# And it's a bit comfusing whether the model need to write a program or directly output the result.
# Here we filter them out.
# Note this is not a comprehensive filtering for all programming instructions.
if inst.startswith("Write a program"):
continue
# filter those starting with punctuation
if inst[0] in string.punctuation:
continue
# filter those starting with non-english character
if not inst[0].isascii():
continue
instructions.append({"instruction": inst, "input": input, "output": output})
return instructions
def find_word_in_string(w, s):
return re.compile(r"\b({0})\b".format(w), flags=re.IGNORECASE).search(s)
def generate_instruction_following_data(args):
seed_tasks = [json.loads(l) for l in open(args.seed_tasks_path, "r")]
seed_instruction_data = [
{"instruction": t["instruction"], "input": t["instances"][0]["input"], "output": t["instances"][0]["output"]}
for t in seed_tasks
]
# 사람이 정의한 instruction 데이터들을 불러온다.
# 미리 스탠포드에서 정의한 데이터 셋 175개 존재한다
print(f"Loaded {len(seed_instruction_data)} human-written seed instructions")
os.makedirs(args.output_dir, exist_ok=True)
request_idx = 0
# load the LM-generated instructions
machine_instruction_data = []
if os.path.exists(os.path.join(args.output_dir, "regen.json")):
machine_instruction_data = utils.jload(os.path.join(args.output_dir, "regen.json"))
print(f"Loaded {len(machine_instruction_data)} machine-generated instructions")
# similarities = {}
scorer = rouge_scorer.RougeScorer(["rougeL"], use_stemmer=False)
# now let's generate new instructions!
progress_bar = tqdm.tqdm(total=args.num_instructions_to_generate)
if machine_instruction_data:
progress_bar.update(len(machine_instruction_data))
# 사람이 작성한 instruction과 machine이 작성한 instruction만을 모아서 저장
all_instructions = [d["instruction"] for d in seed_instruction_data] + [
d["instruction"] for d in machine_instruction_data
]
# 저장된 instrcution data를 tokenizer 한다.
all_instruction_tokens = [scorer._tokenizer.tokenize(inst) for inst in all_instructions]
# 사람이 생성한 instrcution보다 기계가 생성한 수가 많을 때까지 while문을 돌린다.
while len(machine_instruction_data) < args.num_instructions_to_generate:
request_idx += 1
batch_inputs = []
# request_batch_size만큼 숫자의 프롬프트 문구를 생성한다.
for _ in range(args.request_batch_size):
# 사람이 생성한 instruction 셋(seed_instruction_data)에서 랜덤하게 num_prompt_instructions 수만큼 뽑는다.
prompt_instructions = random.sample(seed_instruction_data, args.num_prompt_instructions)
# [생성 조건 + 사람의 생성한 instruction]을 결합해서 최대 20개의 task를 생성하는 프롬프트 작성하는 함수
prompt = encode_prompt(prompt_instructions)
batch_inputs.append(prompt)
decoding_args = utils.OpenAIDecodingArguments(
temperature=args.temperature,
n=1,
max_tokens=3072, # hard-code to maximize the length. the requests will be automatically adjusted
top_p=args.top_p,
stop=["\n20", "20.", "20."],
)
request_start = time.time()
results = utils.openai_completion(
prompts=batch_inputs,
model_name=args.model_name,
batch_size=args.request_batch_size,
decoding_args=decoding_args,
api_key=args.api_key,
logit_bias={"50256": -100}, # prevent the <|endoftext|> token from being generated
)
request_duration = time.time() - request_start
process_start = time.time()
instruction_data = []
for result in results:
new_instructions = post_process_gpt3_response(args.num_prompt_instructions, result)
instruction_data += new_instructions
total = len(instruction_data)
keep = 0
for instruction_data_entry in instruction_data:
# computing similarity with the pre-tokenzied instructions
new_instruction_tokens = scorer._tokenizer.tokenize(instruction_data_entry["instruction"])
with Pool(args.num_cpus) as p:
rouge_scores = p.map(
partial(rouge_scorer._score_lcs, new_instruction_tokens),
all_instruction_tokens,
)
rouge_scores = [score.fmeasure for score in rouge_scores]
most_similar_instructions = {
all_instructions[i]: rouge_scores[i] for i in np.argsort(rouge_scores)[-10:][::-1]
}
if max(rouge_scores) > 0.7:
continue
else:
keep += 1
instruction_data_entry["most_similar_instructions"] = most_similar_instructions
instruction_data_entry["avg_similarity_score"] = float(np.mean(rouge_scores))
machine_instruction_data.append(instruction_data_entry)
all_instructions.append(instruction_data_entry["instruction"])
all_instruction_tokens.append(new_instruction_tokens)
progress_bar.update(1)
process_duration = time.time() - process_start
print(f"Request {request_idx} took {request_duration:.2f}s, processing took {process_duration:.2f}s")
print(f"Generated {total} instructions, kept {keep} instructions")
utils.jdump(machine_instruction_data, os.path.join(args.output_dir, "regen.json"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='generate self-instruction')
parser.add_argument('--output_dir', default="./dataset")
parser.add_argument('--seed_tasks_path', default="./seed_tasks.jsonl")
parser.add_argument('--num_instructions_to_generate', default=1)
parser.add_argument('--model_name', default="text-davinci-003")
parser.add_argument('--num_prompt_instructions', default=3)
parser.add_argument('--request_batch_size', default=1)
parser.add_argument('--temperature', default=1.0)
parser.add_argument('--top_p', default=1.0)
parser.add_argument('--num_cpus', default=16)
parser.add_argument('--api_key', default="")
args = parser.parse_args()
generate_instruction_following_data(args)