-
Notifications
You must be signed in to change notification settings - Fork 1
/
DESCRIPTION
77 lines (77 loc) · 2.1 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
Package: jlmerclusterperm
Title: Cluster-Based Permutation Analysis for Densely Sampled Time Data
Version: 1.1.4
Authors@R:
person("June", "Choe", , "jchoe001@gmail.com", role = c("aut", "cre", "cph"),
comment = c(ORCID = "0000-0002-0701-921X"))
Description: An implementation of fast cluster-based permutation analysis
(CPA) for densely-sampled time data developed in Maris & Oostenveld,
2007 <doi:10.1016/j.jneumeth.2007.03.024>. Supports (generalized,
mixed-effects) regression models for the calculation of timewise
statistics. Provides both a wholesale and a piecemeal interface to the
CPA procedure with an emphasis on interpretability and diagnostics.
Integrates 'Julia' libraries 'MixedModels.jl' and 'GLM.jl' for
performance improvements, with additional functionalities for
interfacing with 'Julia' from 'R' powered by the 'JuliaConnectoR'
package.
License: MIT + file LICENSE
URL: https://github.com/yjunechoe/jlmerclusterperm,
https://yjunechoe.github.io/jlmerclusterperm/
BugReports: https://github.com/yjunechoe/jlmerclusterperm/issues
Depends:
R (>= 3.5)
Imports:
backports (>= 1.1.7),
cli,
generics,
JuliaConnectoR,
JuliaFormulae,
lme4,
stats,
tools,
utils
Suggests:
broom,
broom.mixed,
covr,
dplyr,
eyetrackingR,
forcats,
future,
ggplot2,
knitr,
MASS,
patchwork,
readr,
rmarkdown,
scales,
testthat (>= 3.0.0),
tibble
VignetteBuilder:
knitr
Config/testthat/edition: 3
Encoding: UTF-8
Roxygen: list(markdown = TRUE, roclets = c ("namespace", "rd",
"srr::srr_stats_roclet"))
RoxygenNote: 7.3.2
SystemRequirements: Julia (>= 1.8)
Collate:
'jlmerclusterperm-package.R'
'aaa.R'
'utils.R'
'interop-utils.R'
'interop-utils-unexported.R'
'julia_rng.R'
'jlmer_spec.R'
'jlmer.R'
'compute_timewise_statistics.R'
'permute.R'
'permute_timewise_statistics.R'
'clusters_methods.R'
'extract_clusters.R'
'calculate_pvalue.R'
'clusterpermute.R'
'threshold_search.R'
'tidy.R'
'zzz.R'
'srr-stats-standards.R'