-
Notifications
You must be signed in to change notification settings - Fork 0
/
carbon_dynamics.R
439 lines (399 loc) · 20 KB
/
carbon_dynamics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
library("reshape")
library("plotrix")
library("relimp")
library("MASS")
library("car")
library("ggplot2")
library("multcomp")
library("class")
library("Hmisc")
library("scatterplot3d")
library("reshape")
library("compare")
library("truncreg")
library("truncdist")
library("msm") ## for dtnorm
library("actuar")
library("moments")
library("vegan")
library("stats")
source("utils.R")
################
## full model ##
################
exe <- function(Y, FRI, Season,Tree) {
stand <-sample(Tree[1,], replace = F)
n <- length(stand)
N1s <- rep(1, n)
N0s <- rep(0, n)
BurnMortP <- numeric(n)
BurnMortPpar <- numeric(n)
shannon <- 0
ScH <- 0
cl <- 0
dbhl <- c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29) # dbh lower limit
dbhu <- c(3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31) # dbh upper limit
dbhq <- sqrt((dbhu^3-dbhl^3)/((dbhu-dbhl) * 3)) # assuming a uniform dbh distribution over interval
baq <- (dbhq/2)^2 * pi/1e4
# Initialise variables
Top <- ceiling(Height(dbhq))
Top <- ifelse(Top<2, rep(2, length(Top)), Top)
HeightUpdated <- Top
PCR <- crownratio(dbhq, sum(baq * stand))
CCR <- PCR
Base <- floor(HeightUpdated * (1-CCR))
Bark <- 0.032 * 2.54 * dbhq ##inches to cm!! Black spruce Equation taken from Behave plus fire modelling system (thickness in cm)
hatom2 <- 1e4
b <- 3
DenCrit <- 0.11
iw <- dbhu-dbhl
BarkThickness <- 0.032 * 2.54 * dbhq
n <- length(stand)
N1s <- rep(1, n)
N0s <- rep(0, n)
n <- length(stand)
m2Ha <- 1e4
biocar_factor <- 0.5
MgKg <- 1000
SaplingSurvival <- 0.98 # sapling survival of different initial sizes (Matthias et al. 2003)
pBurn <- 1/FRI
NF <- 0
fire.year <- NULL
RegenLagTime <- 27 # assume it takes a 3-yr old natural seedling 27 yearss to grow to
# 214 cm (DBH 1.0 cm), VanBoagaert et al. 2015)
RegenRegular <- 60 # natural regeneration
RegenIrregular <- 55 # natural regeneration
shannon <- diversity(stand[5:15], index = "shannon", MARGIN = 1, base = exp(1)) # shannon index
RegenCohorts <- rpois(RegenLagTime, ifelse(shannon<1.7, RegenRegular, RegenIrregular))
CPool <- c(5.8, 2.1, 24, 9.89, 9.0, 36, 1.69, 3.75, 74) * MgKg
Snags <- 0
Snagbranches <- 0
SnagFoliage <- 0
SnagCoarse <- 0
SnagFine <- 0
CC <- 0
# Initialize object variables to save simulation results
Size <- matrix(0, Y, n, byrow = TRUE)
PreFireStand <- matrix(0, Y, n, byrow = TRUE)
Recruits <- numeric(Y)
BA <- numeric(Y)
FireDeaths <- matrix(0, Y, n, byrow = TRUE)
Senescence <- matrix(0, Y, n, byrow = TRUE)
Transition <- matrix(0, Y, n, byrow = TRUE) # transition probability
Crecimiento <- matrix(0, Y, n, byrow = TRUE)
Parcela <- matrix(0, Y, n, byrow = TRUE)
Muertos <- matrix(0, Y, n, byrow = TRUE)
Mortality <- matrix(0, Y, n, byrow = TRUE) # probability of mortality
Structure <- numeric(Y)
InitialIntensity <- numeric(Y)
DroughtCode <- numeric(Y)
FireSize <- numeric(Y)
FireSeason <- numeric(Y)
BALost <- numeric(Y)
Delta_BA <- numeric(Y)
DeltaN <- matrix(0, Y, n, byrow = TRUE)
CR <- matrix(0, Y, n, byrow = TRUE)
Heights <- matrix(0, Y, n, byrow = TRUE)
Heights <- matrix(0, Y, n, byrow = TRUE)
ShiftCrownratio <- matrix(0, Y, n, byrow = TRUE)
ShiftHeights <- matrix(0, Y, n, byrow = TRUE)
DiameterGrowth <- matrix(0, Y, n, byrow = TRUE)
SnagCProduction <- numeric(Y)
SnagCProductionS <- numeric(Y)
SnagCProductionF <- numeric(Y)
Turnover <- numeric(Y)
DOMC_Pool <- matrix(0, Y, length(CPool), byrow = TRUE)
DOM_Flux <- numeric(Y)
DOM_Inputs <- matrix(0, Y, 9, byrow = TRUE)
BioMass <- matrix(c(Stemwood(dbhq), Bark(dbhq), Branches(dbhq), Needles(dbhq), Coarse(dbhq), Fineroots(dbhq)), nrow = 6,
ncol = length(dbhq), byrow = TRUE)
BioMassCarbon <- BioMass * biocar_factor # Biomass C per diameter class
InitialCBiomass <- sum(BioMassCarbon%*%as.matrix(stand)) # initial biomass for the site
ICB <- InitialCBiomass # initial biomass for the site
NetPrimaryProductivity <- numeric(Y)
TotalLiveBiomass <- numeric(Y)
AppliedDecayRates <- matrix(0, Y, 9, byrow = TRUE)
EmpiricalTemperature <- numeric(Y)
NetEcosystemProduction <- numeric(Y)
Rh <- numeric(Y)
CarbonCombusted <- numeric(Y)
AnnualBiomassRecruits <- numeric(Y)
CarbonEmissions1 <- numeric(Y)
CarbonEmissions2 <- numeric(Y)
CarbonEmissions3 <- numeric(Y)
NetBiomeProduction <- numeric(Y)
FuelConsumed <- numeric(Y)
# main loop
for (y in 1:Y) {
DataFire <- Season[sample(nrow(Season), size=1, replace=F),]
DC <- as.numeric(DataFire$ISec)
firesize <- as.numeric(DataFire$SupFin)
HeadIntensity <- as.numeric(DataFire$Catchpole)
I <- HeadIntensity
Istart <- I
shannon <- diversity(stand[5:15], index = "shannon", MARGIN = 1, base = exp(1)) ##updated shannon
Structure[y] <- shannon
Firedeaths <- rep(0, 15)
SnagsS <- 0
SnagbranchesS <- 0
SnagFoliageS <- 0
SnagCoarseS <- 0
SnagFineS <- 0
SnagsFire <- 0
SnagbranchesFire <- 0
SnagFoliageFire <- 0
SnagCoarseFire <- 0
SnagFineFire <- 0
carbon.consumed.medium <- 0
carbon.consumed.agfast <- 0
carbon.consumed.agvfast <- 0
carbon.consumed.agslow <- 0
carbon.emissions <- 0
CE <- 0
C <- 0
CC2<- 0
BALost[y] <- 0
bay <- sum(stand * baq)
MAT <- 0.36
EmpiricalTemperature[y] <- MAT
AppDecayRates <- Decayrates(MAT)
AppliedDecayRates[y, ] <- AppDecayRates
Decayrate <- rep(0, 9)
Decayrate[1] <- AppDecayRates[1]
Decayrate[2] <- AppDecayRates[2]
Decayrate[3] <- AppDecayRates[3]
Decayrate[4] <- AppDecayRates[4]
Decayrate[5] <- AppDecayRates[5]
Decayrate[6] <- AppDecayRates[6]
Decayrate[7] <- AppDecayRates[7]
Decayrate[8] <- AppDecayRates[8]
Decayrate[9] <- AppDecayRates[9]
# Apply decay rates to CPools
CarbonPoolTransferMatrix <- matrix(c(
Decayrate[1] * 0.83, (1-Decayrate[1]-0.032), 0, 0.032, 0, 0, Decayrate[1] * (1-0.83), 0, 0, 0,
Decayrate[2] * 0.83, 0, (1-Decayrate[2]-0.10), 0, 0.10, 0, Decayrate[2] * (1-0.83), 0, 0, 0,
Decayrate[3] * 0.83, 0, 0, 1-Decayrate[3], 0, 0, Decayrate[3] * (1-0.83), 0, 0, 0,
Decayrate[4] * 0.83, 0, 0, 0, (1-Decayrate[4]), 0, Decayrate[4] * (1-0.83), 0, 0, 0,
Decayrate[5] * 0.815, 0, 0, 0, 0, (1-Decayrate[5]), Decayrate[5] * (1-0.815), 0, 0, 0,
Decayrate[6] * 1, 0, 0, 0, 0, 0, (1-Decayrate[6]-0.006), 0, 0, 0.006,
Decayrate[7] * 0.83, 0, 0, 0, 0, 0, 0, (1-Decayrate[7]), 0, Decayrate[7] * (1-0.83),
Decayrate[8] * 0.83, 0, 0, 0, 0, 0, 0, 0, (1-Decayrate[8]), Decayrate[8] * (1-0.83),
Decayrate[9] * 1, 0, 0, 0, 0, 0, 0, 0, 0, 1-Decayrate[9]
), nrow = 9, ncol = 10, byrow = TRUE)
colnames(CarbonPoolTransferMatrix) <- c("Atm", "Snags", "Snagbranch", "Medium",
"AGfast", "AGveryfast", "AGslow", "BGveryfast", "BGfast", "BGslow")
rownames(CarbonPoolTransferMatrix) <- c("Snags", "Snagbranch", "Medium", "AGfast", "AGveryfast", "AGslow",
"BGveryfast", "BGfast", "BGslow")
tmp <- as.vector(t(CPool)%*%CarbonPoolTransferMatrix)
SoilCAtmFlux <- tmp[1]
# Stand dynamics
annual_diam_incre <- diameter_growth(stand, dbhq, baq, u_i, u_ik)
annual_diam_incre_small <- diametersmall(stand, dbhq, baq)
annual_diam_incre[1:4] <- annual_diam_incre_small[1:4]
adi <- annual_diam_incre
graduating <- 1 / (iw / adi) #Transition probabilities
growth <- rbinom(N1s, stand, graduating) #stochastically
stand <- stand - growth
stand <- stand + c(0, growth[1:n - 1]) #after growth
LastDCT <- growth[15] # prevents loosing trees in last diameter class
stand [15] <- stand[15] + LastDCT
BAIncrement <- sum(growth * baq) # patch BA increment due to growth
CCRgrowth <- growth * CCR # the trees that grow bring their crown ratio
Heightgrowth <- growth * HeightUpdated
# Calculate Biomass due to growth
GrowthCBiomass <- sum(BioMassCarbon %*% as.matrix(stand)) # calculate biomass due to growth
delta <- (GrowthCBiomass-ICB) # Biomass that has not been lost to turnover or mortality
# Apply turnover
# match IPCC Good Practice Guidance
Stemwoodsmall <- BioMassCarbon[1, 1:4] %*% (stand[1:4])
Barkmerchantable <- BioMassCarbon[2, 5:15] %*% (stand[5:15])
LiveBiomassCPools <- BioMassCarbon %*% (stand) # biomass C kg/ha
LiveBiomassCPoolsCorrected <- matrix(0, nrow = 5, ncol = 1)
LiveBiomassCPoolsCorrected[1, 1] <- LiveBiomassCPools[1, 1] - Stemwoodsmall + Barkmerchantable
LiveBiomassCPoolsCorrected[2, 1] <- LiveBiomassCPools[2, 1] - Barkmerchantable + LiveBiomassCPools[3, 1] +
Stemwoodsmall #Otherwood + Bark
LiveBiomassCPoolsCorrected[3, 1] <- LiveBiomassCPools[4, 1] # Foliage
LiveBiomassCPoolsCorrected[4, 1] <- LiveBiomassCPools[5, 1] # Coarse
LiveBiomassCPoolsCorrected[5, 1] <- LiveBiomassCPools[6, 1] # Fine
# Apply transfer rates
Input_Matrix2 <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, (1 - 0.04), 0, 0, 0, 0, (0.04 * 0.25), 0, (0.04 * 0.75), 0, 0, 0, 0, 0,
0, 0, (1 - 0.16), 0, 0, 0, 0, 0, 0, (0.16 * 1), 0, 0, 0, 0,
0, 0, 0, (1 - 0.02), 0, 0, 0, 0, (0.02 * 0.5), 0, 0, 0, (0.02 * 0.5), 0,
0, 0, 0, 0, (1 - 0.64), 0, 0, 0, 0, (0.64 * 0.5), 0, (0.64 * 0.5), 0, 0
), nrow = 5, ncol = 14, byrow = TRUE)
colnames(Input_Matrix2) <- c("Merchantable", "Otherwood", "Needles",
"Coarse", "Fine", "Snags", "Snagbranch",
"Medium", "AGfast", "AGveryfast", "AGslow",
"BGveryfast", "BGfast", "BGslow")
rownames(Input_Matrix2) <- c("Merchantable", "Otherwood",
"Needles", "Coarse", "Fine")
ctmp <- as.vector(t(LiveBiomassCPoolsCorrected)%*%Input_Matrix2) # turnover
BiomassLostTurnover <- sum(ctmp[6:14])
# Carbon fluxes
NPP <- delta + BiomassLostTurnover
NEP <- (NPP-SoilCAtmFlux)
# Mortality (senescence and fire)
surviving <- mortality(stand, dbhq, baq)
surviving[1:4] <- SaplingSurvival
Senescencedeaths <- rbinom(N1s, stand, 1 - surviving)
Senescence[y, ] <- Senescencedeaths
stand <- stand-Senescencedeaths # fire deaths are taken care in the fire module
# Fire module
# Evaluates if a fire arrives, its intensity, crowning, and post-fire tree mortality and regeneration.
if(runif(1) < pBurn) { # Determine if a fire happens
FuelLoad <- sum(CPool[5],CPool[6]) # only AGslow and AGvf
fire.year <- c(fire.year, y)
NF <- NF + 1 # Update number of fires that occurred during the simulation
RegenCohorts <- rep(0, RegenLagTime) # KILL ALL regenerating trees
prefirestand <- stand
PreFireStand[y, ] <- prefirestand
NewRegen <- SeedProd(prefirestand, baq)
Fuel <- as.numeric(FuelClass(stand, dbhq)) # Kg/ha per dbh class
VF <- VerticalFuelProfile(Fuel, HeightUpdated, Base)
cl <- Crowning(I, HeightUpdated, Base, VF, b, DenCrit) #if there is crowning, update the crown layer affected by fire
cl <- ifelse (cl>0, UpdateCrownLayer(cl, HeightUpdated, Base, VF, b, DenCrit),
Crowning(I, HeightUpdated, Base, VF, b, DenCrit))
u <- UpdateIntensity(I, HeightUpdated[cl])
I <- ifelse(cl > 0, max(UpdateIntensity(I, HeightUpdated[cl])), Istart)
ScH <- ScorchHeight(I)
CK <- CrownKill(I, HeightUpdated, CCR)
BurnMortP <- ScorchMortality(BarkThickness, CrownKill(I, HeightUpdated, CCR))
Firedeaths <- rbinom(N1s, stand, BurnMortP)
Firedeaths <- ifelse(is.na(Firedeaths), N0s, Firedeaths)
FireDeaths[y, ] <- Firedeaths
newstand <- stand-Firedeaths
severity <- Basalost(stand, baq, newstand)
stand <- newstand # update stand after a fire
InitialIntensity[y] <- I # adjusted intensity using Catchpole et.al 1992
DroughtCode[y] <- DC
FireSize [y] <- firesize
BALost[y] <- severity
C <- 1.185*exp(-4.252)*exp(0.671*log(FuelLoad))*exp(0.71*log(DC))
pFF <- min(C/(CPool[5] + CPool[6]),1)
carbon.consumed.medium <- CPool[3]*0.392140 #carbon consumed in the medium carbon pool
carbon.consumed.agfast <- CPool[4]*0.6415 #carbon consumed in the Ag fast carbon pool
carbon.consumed.agvfast <- pFF * CPool[5] #carbon consumed in the Ag very fast carbon pool
carbon.consumed.agslow <- pFF * CPool[6] #carbon consumed in the Ag slow carbon pool
CPool[3] <- CPool[3]- carbon.consumed.medium
CPool[4] <- CPool[4]- carbon.consumed.agfast
CPool[5] <- CPool[5]- carbon.consumed.agvfast #carbon left in the Ag very fast pool
CPool[6] <- CPool[6]- carbon.consumed.agslow #carbon left in the Ag slowpool
FuelConsumed [y] <- C
} else {
NewRegen <- rpois(1, ifelse(shannon < 1.7, RegenRegular, RegenIrregular))
}
# Calculate carbon from fire-derived and senescencent trees
deaths <- Senescencedeaths + Firedeaths
DeltaBA<- BAIncrement-sum(deaths*baq) ##net basal area increment after mortality (fire and senescence) and growth
SnagCpools <- SnagsCarbon(Senescencedeaths,Firedeaths,BioMassCarbon)
SnagsS <- SnagCpools$SnagC
SnagbranchesS <- SnagCpools$SnagbranchC
SnagFoliageS <- SnagCpools$SnagFoliage
SnagCoarseS <- SnagCpools$SnagCoarse
SnagFineS <- SnagCpools$SnagFine
CMortalityS <- SnagsS+SnagbranchesS+SnagFoliageS+SnagCoarseS+ SnagFineS
SnagsFire <- SnagCpools$SnagCF
SnagbranchesFire <- SnagCpools$SnagbranchCF
SnagFoliageFire <- SnagCpools$SnagFoliageF
SnagCoarseFire <- SnagCpools$SnagCoarseF
SnagFineFire <- SnagCpools$SnagFineF
CMortalityF <- SnagsFire+SnagbranchesFire+SnagFoliageFire+SnagCoarseFire+SnagFineFire
Snags <- SnagsS+SnagsFire
Snagbranches <- SnagbranchesS+SnagbranchesFire
SnagFoliage <- SnagFoliageS+SnagFoliageFire
SnagCoarse <- SnagCoarseS+SnagCoarseFire
SnagFine <- SnagFineS+SnagFineFire
CMortality <- Snags + Snagbranches + SnagFoliage + SnagCoarse + SnagFine
CE <- SnagCpools$CE
carbon.emissions <- carbon.consumed.medium+carbon.consumed.agfast+ carbon.consumed.agvfast+carbon.consumed.agslow+carbon.emissions ##fire carbon emissions total
CC2 <- carbon.consumed.medium+carbon.consumed.agfast+ carbon.consumed.agvfast+carbon.consumed.agslow
NBP <- NEP - carbon.emissions
# Add recruitment
Recruits[y] <- RegenCohorts[RegenLagTime]
RegenCohorts <- c(NewRegen, RegenCohorts[1:RegenLagTime - 1])
stand[1] <- stand[1] + Recruits[y]
CCRRecruits <- Recruits[y] * PCR[1]
HeightRecruits <- Recruits[y] * Top[1]
Parcela[y, ] <- stand # stand after regeneration, captures regeneration pulses
# Update biomass
Biomass <- sum(BioMassCarbon %*% as.matrix(stand))
ICB <- Biomass
# Dynamically updating crown ratios and heights of recruits (natural regenerated and fire derived)
xH <- Top + adi # Heightgrowth
dH <- xH-Top # deltaheight
MaximumCR <- (CCR * Top + dH) / xH
TotalN <- stand + c(0, growth[1:n - 1])
TotalN[1] <- TotalN[1] + Recruits[y]
CCR <- updateCR(PCR, CCR, dbhq, Top, adi, bay, DeltaBA, stand) # CCR after recruitment, growth, mortality
CCRnow <- stand * CCR
ShiftCR <- CCRnow + c(0, CCRgrowth[1:n - 1])
ShiftCR[1] <- ShiftCR[1] + CCRRecruits
CCR <- ifelse(stand > 0, pmin(MaximumCR, ShiftCR / TotalN), PCR)
# Updating heights
Top <- Height(dbhq)
HeightUpdated <- Top + adi # Heightgrowth
Heightnow <- stand * HeightUpdated
ShiftHeight <- Heightnow + c(0, Heightgrowth[1:n-1])
ShiftHeight[1] <- ShiftHeight[1] + HeightRecruits
HeightUpdated <- ifelse(stand>0, ShiftHeight/TotalN, Top)
Base <- HeightUpdated * (1-CCR)
# Distribute turnover to carbon pools
ctmp[6] <- ctmp[6] + Snags # adding C from snags
ctmp[7] <- ctmp[7] + Snagbranches # adding C from small trees
ctmp[9] <- ctmp[9] + SnagCoarse * (0.5) # adding C from coarse roots to AG fast
ctmp[10] <- ctmp[10] + SnagFine * (0.5) + SnagFoliage
ctmp[12] <- ctmp[12] + SnagFine * (0.5)
ctmp[13] <- ctmp[13] + SnagCoarse * (0.5)
Inputs <- ctmp[6:14] # how much C is incorporated into the DOMCpools including snags (mortality)
CPool <- tmp[2:10] + Inputs # update the pools
# Save results into objects
Delta_BA[y] <- DeltaBA
DeltaN[y, ] <- deaths + growth
Muertos[y, ] <- deaths
SnagCProduction [y] <- CMortality
SnagCProductionS [y] <- CMortalityS
SnagCProductionF [y] <- CMortalityF
CarbonEmissions1[y] <- CE
CarbonEmissions2[y] <- CC2
CarbonEmissions3[y] <- carbon.emissions
TotalLiveBiomass[y] <- Biomass
DOMC_Pool[y, ] <- CPool # Nine DOM carbon pools
DOM_Flux[y] <- SoilCAtmFlux
DOM_Inputs[y, ] <- Inputs
Turnover[y] <- BiomassLostTurnover
NetPrimaryProductivity[y] <- NPP
NetEcosystemProduction[y] <- NEP
NetBiomeProduction[y] <- NBP
Rh[y] <- SoilCAtmFlux
BA[y] <- bay
CR[y, ] <- CCR
Heights[y, ] <- HeightUpdated
ShiftCrownratio[y, ] <- ShiftCR
ShiftHeights[y, ] <- ShiftHeight
DiameterGrowth[y, ] <- adi
Transition[y, ] <- graduating
Mortality[y, ] <- 1-surviving
Crecimiento[y, ] <- growth
Muertos[y, ] <- deaths
Size[y, ] <- stand # final size after all processes
}
res <- list(Parcela = Parcela, Size = Size, DeltaN = DeltaN, BA = BA,
PreFireStand = PreFireStand, Senescence = Senescence,
AppliedDecayRates = AppliedDecayRates,
EmpiricalTemperature = EmpiricalTemperature, FireDeaths = FireDeaths,
Muertos = Muertos, Structure = Structure, Crecimiento = Crecimiento,
Mortality = Mortality, Transition = Transition, Structure = Structure,
DiameterGrowth = DiameterGrowth, CR = CR, CMortality = CMortality,
ShiftCrownratio = ShiftCrownratio, ShiftHeights = ShiftHeights,
Heights = Heights, BALost = BALost, NF = NF, InitialIntensity = InitialIntensity,
DroughtCode=DroughtCode,fire.year = fire.year, Recruits = Recruits, TotalLiveBiomass = TotalLiveBiomass,
CarbonCombusted = CarbonCombusted, Turnover = Turnover, SnagCProduction = SnagCProduction,
DOMC_Pool = DOMC_Pool, DOM_Flux = DOM_Flux, DOM_Inputs = DOM_Inputs,
NetPrimaryProductivity = NetPrimaryProductivity, Rh = Rh,CarbonEmissions1=CarbonEmissions1,
CarbonEmissions2= CarbonEmissions2,CarbonEmissions3=CarbonEmissions3,
NetEcosystemProduction = NetEcosystemProduction,NetBiomeProduction=NetBiomeProduction,
FuelConsumed=FuelConsumed, FireSize=FireSize, SnagCProductionS=SnagCProductionS,
SnagCProductionF=SnagCProductionF,SnagCProduction=SnagCProduction)
return(res)
}