-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_real-world.py
348 lines (281 loc) · 17.5 KB
/
eval_real-world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from davisinteractive.session import DavisInteractiveSession
from davisinteractive import utils as interactive_utils
from davisinteractive.dataset import Davis
from davisinteractive.metrics import batched_jaccard
from libs import custom_transforms as tr, davis2017_torchdataset
import os
import numpy as np
from PIL import Image
import csv
from datetime import datetime
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import DataLoader
from libs import utils, utils_torch
from libs.analyze_report import analyze_summary
from config import Config
from networks.atnet import ATnet
class Main_tester(object):
def __init__(self, config):
self.config = config
self.Davisclass = Davis(self.config.davis_dataset_dir)
self.current_time = datetime.now().strftime('%Y%m%d-%H%M%S')
self._palette = Image.open(self.config.palette_dir).getpalette()
self.save_res_dir = str()
self.save_log_dir = str()
self.save_logger = None
self.save_csvsummary_dir = str()
self.net = ATnet()
self.net.cuda()
self.net.eval()
self.net.load_state_dict(torch.load(self.config.test_load_state_dir))
# To implement ordered test
self.scr_indices = [1, 2, 3]
self.max_nb_interactions = 8
self.max_time = self.max_nb_interactions * 30
self.scr_samples = []
for v in sorted(self.Davisclass.sets[self.config.test_subset]):
for idx in self.scr_indices:
self.scr_samples.append((v, idx))
self.img_size, self.num_frames, self.n_objects, self.final_masks, self.tmpdict_siact = None, None, None, None, None
self.pad_info, self.hpad1, self.wpad1, self.hpad2, self.wpad2 = None, None, None, None, None
def run_for_diverse_metrics(self, ):
with torch.no_grad():
for metric in self.config.test_metric_list:
if metric == 'J':
dir_name = os.path.split(os.path.split(__file__)[0])[1] + '[J]_' + self.current_time
elif metric == 'J_AND_F':
dir_name = os.path.split(os.path.split(__file__)[0])[1] + '[JF]_' + self.current_time
else:
dir_name = None
print("Impossible metric is contained in config.test_metric_list!")
raise NotImplementedError()
self.save_res_dir = os.path.join(self.config.test_result_dir, dir_name)
utils.mkdir(self.save_res_dir)
self.save_csvsummary_dir = os.path.join(self.save_res_dir, 'summary_in_csv.csv')
self.save_log_dir = os.path.join(self.save_res_dir, 'test_logs.txt')
self.save_logger = utils.logger(self.save_log_dir)
self.save_logger.printNlog(dir_name)
curr_path = os.path.dirname(os.path.abspath(__file__))
os.system('cp {}/config.py {}/config.py'.format(curr_path, self.save_res_dir))
self.run_IVOS(metric)
def run_IVOS(self, metric):
seen_seq = {}
numseq, tmpseq = 0, ''
output_dict = dict()
output_dict['average_objs_iou'] = dict()
output_dict['average_iact_iou'] = np.zeros(self.max_nb_interactions)
output_dict['annotated_frames'] = dict()
with open(self.save_csvsummary_dir, mode='a') as csv_file:
writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['sequence', 'obj_idx', 'scr_idx'] + ['round-' + str(i + 1) for i in range(self.max_nb_interactions)])
with DavisInteractiveSession(host=self.config.test_host,
user_key=self.config.test_userkey,
davis_root=self.config.davis_dataset_dir,
subset=self.config.test_subset,
report_save_dir=self.save_res_dir,
max_nb_interactions=self.max_nb_interactions,
max_time=self.max_time,
metric_to_optimize=metric) as sess:
sess.connector.service.robot.min_nb_nodes = self.config.test_min_nb_nodes
sess.samples = self.scr_samples
# sess.samples = [('dog', 3)]
while sess.next():
# Get the current iteration scribbles
self.sequence, scribbles, first_scribble = sess.get_scribbles(only_last=False)
if first_scribble:
anno_dict = {'frames': [], 'annotated_masks': [], 'masks_tobe_modified': []}
n_interaction = 1
info = Davis.dataset[self.sequence]
self.img_size = info['image_size'][::-1]
self.num_frames = info['num_frames']
self.n_objects = info['num_objects']
info = None
seen_seq[self.sequence] = 1 if self.sequence not in seen_seq.keys() else seen_seq[self.sequence] + 1
scr_id = seen_seq[self.sequence]
self.final_masks = np.zeros([self.num_frames, self.img_size[0], self.img_size[1]])
self.pad_info = utils.apply_pad(self.final_masks[0])[1]
self.hpad1, self.wpad1 = self.pad_info[0][0], self.pad_info[1][0]
self.hpad2, self.wpad2 = self.pad_info[0][1], self.pad_info[1][1]
self.h_ds, self.w_ds = int((self.img_size[0] + sum(self.pad_info[0])) / 4), int((self.img_size[1] + sum(self.pad_info[1])) / 4)
self.anno_6chEnc_r5_list = []
self.anno_3chEnc_r5_list = []
self.prob_map_of_frames = torch.zeros((self.num_frames, self.n_objects, 4 * self.h_ds, 4 * self.w_ds)).cuda()
self.gt_masks = self.Davisclass.load_annotations(self.sequence)
IoU_over_eobj = []
else:
n_interaction += 1
self.save_logger.printNlog('\nRunning sequence {} in (scribble index: {}) (round: {})'
.format(self.sequence, sess.samples[sess.sample_idx][1], n_interaction))
annotated_now = interactive_utils.scribbles.annotated_frames(sess.sample_last_scribble)[0]
anno_dict['frames'].append(annotated_now) # Where we save annotated frames
anno_dict['masks_tobe_modified'].append(self.final_masks[annotated_now]) # mask before modefied at the annotated frame
# Get Predicted mask & Mask decision from pred_mask
self.final_masks = self.run_VOS_singleiact(n_interaction, scribbles, anno_dict['frames']) # self.final_mask changes
if self.config.test_save_all_segs_option:
utils.mkdir(
os.path.join(self.save_res_dir, 'result_video', '{}-scr{:02d}/round{:02d}'.format(self.sequence, scr_id, n_interaction)))
for fr in range(self.num_frames):
savefname = os.path.join(self.save_res_dir, 'result_video',
'{}-scr{:02d}/round{:02d}'.format(self.sequence, scr_id, n_interaction),
'{:05d}.png'.format(fr))
tmpPIL = Image.fromarray(self.final_masks[fr].astype(np.uint8), 'P')
tmpPIL.putpalette(self._palette)
tmpPIL.save(savefname)
# Submit your prediction
sess.submit_masks(self.final_masks) # F, H, W
# print sequence name
if tmpseq != self.sequence:
tmpseq, numseq = self.sequence, numseq + 1
print(str(numseq) + ':' + str(self.sequence) + '-' + str(seen_seq[self.sequence]) + '\n')
## Visualizers and Saver
# IoU estimation
jaccard = batched_jaccard(self.gt_masks,
self.final_masks,
average_over_objects=False,
nb_objects=self.n_objects
) # frames, objid
IoU_over_eobj.append(jaccard)
anno_dict['annotated_masks'].append(self.final_masks[annotated_now]) # mask after modefied at the annotated frame
if self.max_nb_interactions == len(anno_dict['frames']): # After Lastround -> total 90 iter
seq_scrid_name = self.sequence + str(scr_id)
# IoU manager
IoU_over_eobj = np.stack(IoU_over_eobj, axis=0) # niact,frames,n_obj
IoUeveryround_perobj = np.mean(IoU_over_eobj, axis=1) # niact,n_obj
output_dict['average_iact_iou'] += np.sum(IoU_over_eobj[list(range(n_interaction)), anno_dict['frames']], axis=-1)
output_dict['annotated_frames'][seq_scrid_name] = anno_dict['frames']
# write csv
for obj_idx in range(self.n_objects):
with open(self.save_csvsummary_dir, mode='a') as csv_file:
writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow([self.sequence, str(obj_idx + 1), str(scr_id)] + list(IoUeveryround_perobj[:, obj_idx]))
summary = sess.get_global_summary(save_file=self.save_res_dir + '/summary_' + sess.report_name[7:] + '.json')
analyze_summary(self.save_res_dir + '/summary_' + sess.report_name[7:] + '.json', metric=metric)
# final_IOU = summary['curve'][metric][-1]
average_IoU_per_round = summary['curve'][metric][1:-1]
torch.cuda.empty_cache()
model = None
return average_IoU_per_round
def run_VOS_singleiact(self, n_interaction, scribbles_data, annotated_frames):
annotated_frames_np = np.array(annotated_frames)
num_workers = 4
annotated_now = annotated_frames[-1]
scribbles_list = scribbles_data['scribbles']
seq_name = scribbles_data['sequence']
output_masks = self.final_masks.copy().astype(np.float64)
prop_list = utils.get_prop_list(annotated_frames, annotated_now, self.num_frames, proportion=self.config.test_propagation_proportion)
prop_fore = sorted(prop_list)[0]
prop_rear = sorted(prop_list)[-1]
# Interaction settings
pm_ps_ns_3ch_t = [] # n_obj,3,h,w
if n_interaction == 1:
for obj_id in range(1, self.n_objects + 1):
pos_scrimg = utils.scribble_to_image(scribbles_list, annotated_now, obj_id,
dilation=self.config.scribble_dilation_param,
prev_mask=self.final_masks[annotated_now])
pm_ps_ns_3ch_t.append(np.stack([np.ones_like(pos_scrimg) / 2, pos_scrimg, np.zeros_like(pos_scrimg)], axis=0))
pm_ps_ns_3ch_t = np.stack(pm_ps_ns_3ch_t, axis=0) # n_obj,3,h,w
# Image.fromarray((scr_img[:, :, 1] * 255).astype(np.uint8)).save('/home/six/Desktop/CVPRW_figure/judo_obj1_scr.png')
else:
for obj_id in range(1, self.n_objects + 1):
prev_round_input = (self.final_masks[annotated_now] == obj_id).astype(np.float32) # H,W
pos_scrimg, neg_scrimg = utils.scribble_to_image(scribbles_list, annotated_now, obj_id,
dilation=self.config.scribble_dilation_param,
prev_mask=self.final_masks[annotated_now], blur=True,
singleimg=False, seperate_pos_neg=True)
pm_ps_ns_3ch_t.append(np.stack([prev_round_input, pos_scrimg, neg_scrimg], axis=0))
pm_ps_ns_3ch_t = np.stack(pm_ps_ns_3ch_t, axis=0) # n_obj,3,h,w
pm_ps_ns_3ch_t = torch.from_numpy(pm_ps_ns_3ch_t).cuda()
if (prop_list[0] != annotated_now) and (prop_list.count(annotated_now) != 2):
print(str(prop_list))
raise NotImplementedError
print(str(prop_list)) # we made our proplist first backward, and then forward
composed_transforms = transforms.Compose([tr.Normalize_ApplymeanvarImage(self.config.mean, self.config.var),
tr.ToTensor()])
db_test = davis2017_torchdataset.DAVIS2017(split='val', transform=composed_transforms, root=self.config.davis_dataset_dir,
custom_frames=prop_list, seq_name=seq_name, rgb=True,
obj_id=None, no_gt=True, retname=True, prev_round_masks=self.final_masks, )
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True)
flag = 0 # 1: propagating backward, 2: propagating forward
print('[{:01d} round] processing...'.format(n_interaction))
for ii, batched in enumerate(testloader):
# batched : image, scr_img, 0~fr, meta
inpdict = dict()
operating_frame = int(batched['meta']['frame_id'][0])
for inp in batched:
if inp == 'meta': continue
inpdict[inp] = Variable(batched[inp]).cuda()
inpdict['image'] = inpdict['image'].expand(self.n_objects, -1, -1, -1)
#################### Iaction ########################
if operating_frame == annotated_now: # Check the round is on interaction
if flag == 0:
flag += 1
adjacent_to_anno = True
elif flag == 1:
flag += 1
adjacent_to_anno = True
continue
else:
raise NotImplementedError
pm_ps_ns_3ch_t = torch.nn.ReflectionPad2d(self.pad_info[1] + self.pad_info[0])(pm_ps_ns_3ch_t)
inputs = torch.cat([inpdict['image'], pm_ps_ns_3ch_t], dim=1)
output_logit, anno_6chEnc_r5 = self.net.forward_ANet(inputs) # [nobj, 1, P_H, P_W], # [n_obj,2048,h/16,w/16]
output_prob_anno = torch.sigmoid(output_logit)
prob_onehot_t = output_prob_anno[:, 0].detach()
anno_3chEnc_r5, _, _, r2_prev_fromanno = self.net.encoder_3ch.forward(inpdict['image'])
self.anno_6chEnc_r5_list.append(anno_6chEnc_r5)
self.anno_3chEnc_r5_list.append(anno_3chEnc_r5)
if len(self.anno_6chEnc_r5_list) != len(annotated_frames):
raise NotImplementedError
#################### Propagation ########################
else:
# Flag [1: propagating backward, 2: propagating forward]
if adjacent_to_anno:
r2_prev = r2_prev_fromanno
predmask_prev = output_prob_anno
else:
predmask_prev = output_prob_prop
adjacent_to_anno = False
output_logit, r2_prev = self.net.forward_TNet(
self.anno_3chEnc_r5_list, inpdict['image'], self.anno_6chEnc_r5_list, r2_prev, predmask_prev) # [nobj, 1, P_H, P_W]
output_prob_prop = torch.sigmoid(output_logit)
prob_onehot_t = output_prob_prop[:, 0].detach()
smallest_alpha = 0.5
if flag == 1:
sorted_frames = annotated_frames_np[annotated_frames_np < annotated_now]
if len(sorted_frames) == 0:
alpha = 1
else:
closest_addianno_frame = np.max(sorted_frames)
alpha = smallest_alpha + (1 - smallest_alpha) * (
(operating_frame - closest_addianno_frame) / (annotated_now - closest_addianno_frame))
else:
sorted_frames = annotated_frames_np[annotated_frames_np > annotated_now]
if len(sorted_frames) == 0:
alpha = 1
else:
closest_addianno_frame = np.min(sorted_frames)
alpha = smallest_alpha + (1 - smallest_alpha) * (
(closest_addianno_frame - operating_frame) / (closest_addianno_frame - annotated_now))
prob_onehot_t = (alpha * prob_onehot_t) + ((1 - alpha) * self.prob_map_of_frames[operating_frame])
# Final mask indexing
self.prob_map_of_frames[operating_frame] = prob_onehot_t
output_masks[prop_fore:prop_rear + 1] = \
utils_torch.combine_masks_with_batch(self.prob_map_of_frames[prop_fore:prop_rear + 1],
n_obj=self.n_objects, th=self.config.test_propth
)[:, 0, self.hpad1:-self.hpad2, self.wpad1:-self.wpad2].cpu().numpy().astype(np.float) # f,h,w
torch.cuda.empty_cache()
return output_masks
if __name__ == '__main__':
config = Config()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.test_gpu_id)
tester = Main_tester(config)
tester.run_for_diverse_metrics()
# try:main_val(model,
# Config,
# min_nb_nodes= min_nb_nodes,
# simplyfied_testset= simplyfied_test,tr(config.test_gpu_id)
# metric = metric)
# except: continue