-
Notifications
You must be signed in to change notification settings - Fork 62
/
pipeline_attend_and_excite.py
600 lines (530 loc) · 30.8 KB
/
pipeline_attend_and_excite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import inspect
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import numpy as np
import torch
from torch.nn import functional as F
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, is_accelerate_available, logging, randn_tensor, replace_example_docstring
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from utils.gaussian_smoothing import GaussianSmoothing
from utils.ptp_utils import AttentionStore, aggregate_attention
logger = logging.get_logger(__name__)
class AttendAndExcitePipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_ prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return text_inputs, prompt_embeds
def _compute_max_attention_per_index(self,
attention_maps: torch.Tensor,
indices_to_alter: List[int],
smooth_attentions: bool = False,
sigma: float = 0.5,
kernel_size: int = 3,
normalize_eot: bool = False) -> List[torch.Tensor]:
""" Computes the maximum attention value for each of the tokens we wish to alter. """
last_idx = -1
if normalize_eot:
prompt = self.prompt
if isinstance(self.prompt, list):
prompt = self.prompt[0]
last_idx = len(self.tokenizer(prompt)['input_ids']) - 1
attention_for_text = attention_maps[:, :, 1:last_idx]
attention_for_text *= 100
attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1)
# Shift indices since we removed the first token
indices_to_alter = [index - 1 for index in indices_to_alter]
# Extract the maximum values
max_indices_list = []
for i in indices_to_alter:
image = attention_for_text[:, :, i]
if smooth_attentions:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
image = smoothing(input).squeeze(0).squeeze(0)
max_indices_list.append(image.max())
return max_indices_list
def _aggregate_and_get_max_attention_per_token(self, attention_store: AttentionStore,
indices_to_alter: List[int],
attention_res: int = 16,
smooth_attentions: bool = False,
sigma: float = 0.5,
kernel_size: int = 3,
normalize_eot: bool = False):
""" Aggregates the attention for each token and computes the max activation value for each token to alter. """
attention_maps = aggregate_attention(
attention_store=attention_store,
res=attention_res,
from_where=("up", "down", "mid"),
is_cross=True,
select=0)
max_attention_per_index = self._compute_max_attention_per_index(
attention_maps=attention_maps,
indices_to_alter=indices_to_alter,
smooth_attentions=smooth_attentions,
sigma=sigma,
kernel_size=kernel_size,
normalize_eot=normalize_eot)
return max_attention_per_index
@staticmethod
def _compute_loss(max_attention_per_index: List[torch.Tensor], return_losses: bool = False) -> torch.Tensor:
""" Computes the attend-and-excite loss using the maximum attention value for each token. """
losses = [max(0, 1. - curr_max) for curr_max in max_attention_per_index]
loss = max(losses)
if return_losses:
return loss, losses
else:
return loss
@staticmethod
def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor:
""" Update the latent according to the computed loss. """
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0]
latents = latents - step_size * grad_cond
return latents
def _perform_iterative_refinement_step(self,
latents: torch.Tensor,
indices_to_alter: List[int],
loss: torch.Tensor,
threshold: float,
text_embeddings: torch.Tensor,
text_input,
attention_store: AttentionStore,
step_size: float,
t: int,
attention_res: int = 16,
smooth_attentions: bool = True,
sigma: float = 0.5,
kernel_size: int = 3,
max_refinement_steps: int = 20,
normalize_eot: bool = False):
"""
Performs the iterative latent refinement introduced in the paper. Here, we continuously update the latent
code according to our loss objective until the given threshold is reached for all tokens.
"""
iteration = 0
target_loss = max(0, 1. - threshold)
while loss > target_loss:
iteration += 1
latents = latents.clone().detach().requires_grad_(True)
noise_pred_text = self.unet(latents, t, encoder_hidden_states=text_embeddings[1].unsqueeze(0)).sample
self.unet.zero_grad()
# Get max activation value for each subject token
max_attention_per_index = self._aggregate_and_get_max_attention_per_token(
attention_store=attention_store,
indices_to_alter=indices_to_alter,
attention_res=attention_res,
smooth_attentions=smooth_attentions,
sigma=sigma,
kernel_size=kernel_size,
normalize_eot=normalize_eot
)
loss, losses = self._compute_loss(max_attention_per_index, return_losses=True)
if loss != 0:
latents = self._update_latent(latents, loss, step_size)
with torch.no_grad():
noise_pred_uncond = self.unet(latents, t, encoder_hidden_states=text_embeddings[0].unsqueeze(0)).sample
noise_pred_text = self.unet(latents, t, encoder_hidden_states=text_embeddings[1].unsqueeze(0)).sample
try:
low_token = np.argmax([l.item() if type(l) != int else l for l in losses])
except Exception as e:
print(e) # catch edge case :)
low_token = np.argmax(losses)
low_word = self.tokenizer.decode(text_input.input_ids[0][indices_to_alter[low_token]])
print(f'\t Try {iteration}. {low_word} has a max attention of {max_attention_per_index[low_token]}')
if iteration >= max_refinement_steps:
print(f'\t Exceeded max number of iterations ({max_refinement_steps})! '
f'Finished with a max attention of {max_attention_per_index[low_token]}')
break
# Run one more time but don't compute gradients and update the latents.
# We just need to compute the new loss - the grad update will occur below
latents = latents.clone().detach().requires_grad_(True)
noise_pred_text = self.unet(latents, t, encoder_hidden_states=text_embeddings[1].unsqueeze(0)).sample
self.unet.zero_grad()
# Get max activation value for each subject token
max_attention_per_index = self._aggregate_and_get_max_attention_per_token(
attention_store=attention_store,
indices_to_alter=indices_to_alter,
attention_res=attention_res,
smooth_attentions=smooth_attentions,
sigma=sigma,
kernel_size=kernel_size,
normalize_eot=normalize_eot)
loss, losses = self._compute_loss(max_attention_per_index, return_losses=True)
print(f"\t Finished with loss of: {loss}")
return loss, latents, max_attention_per_index
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
attention_store: AttentionStore,
indices_to_alter: List[int],
attention_res: int = 16,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
max_iter_to_alter: Optional[int] = 25,
run_standard_sd: bool = False,
thresholds: Optional[dict] = {0: 0.05, 10: 0.5, 20: 0.8},
scale_factor: int = 20,
scale_range: Tuple[float, float] = (1., 0.5),
smooth_attentions: bool = True,
sigma: float = 0.5,
kernel_size: int = 3,
sd_2_1: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
:type attention_store: object
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
self.prompt = prompt
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_inputs, prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
scale_range = np.linspace(scale_range[0], scale_range[1], len(self.scheduler.timesteps))
if max_iter_to_alter is None:
max_iter_to_alter = len(self.scheduler.timesteps) + 1
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
with torch.enable_grad():
latents = latents.clone().detach().requires_grad_(True)
# Forward pass of denoising with text conditioning
noise_pred_text = self.unet(latents, t,
encoder_hidden_states=prompt_embeds[1].unsqueeze(0), cross_attention_kwargs=cross_attention_kwargs).sample
self.unet.zero_grad()
# Get max activation value for each subject token
max_attention_per_index = self._aggregate_and_get_max_attention_per_token(
attention_store=attention_store,
indices_to_alter=indices_to_alter,
attention_res=attention_res,
smooth_attentions=smooth_attentions,
sigma=sigma,
kernel_size=kernel_size,
normalize_eot=sd_2_1)
if not run_standard_sd:
loss = self._compute_loss(max_attention_per_index=max_attention_per_index)
# If this is an iterative refinement step, verify we have reached the desired threshold for all
if i in thresholds.keys() and loss > 1. - thresholds[i]:
del noise_pred_text
torch.cuda.empty_cache()
loss, latents, max_attention_per_index = self._perform_iterative_refinement_step(
latents=latents,
indices_to_alter=indices_to_alter,
loss=loss,
threshold=thresholds[i],
text_embeddings=prompt_embeds,
text_input=text_inputs,
attention_store=attention_store,
step_size=scale_factor * np.sqrt(scale_range[i]),
t=t,
attention_res=attention_res,
smooth_attentions=smooth_attentions,
sigma=sigma,
kernel_size=kernel_size,
normalize_eot=sd_2_1)
# Perform gradient update
if i < max_iter_to_alter:
loss = self._compute_loss(max_attention_per_index=max_attention_per_index)
if loss != 0:
latents = self._update_latent(latents=latents, loss=loss,
step_size=scale_factor * np.sqrt(scale_range[i]))
print(f'Iteration {i} | Loss: {loss:0.4f}')
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)