-
Notifications
You must be signed in to change notification settings - Fork 13
/
detection_images.py
225 lines (193 loc) · 10.1 KB
/
detection_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import glob
import scipy.misc as sm
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
import time
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from utils import ops as utils_ops
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
# This is needed to display the images.
# %matplotlib inline
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from utils import label_map_util
from utils import visualization_utils as vis_util
# What model to download.
# MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
# MODEL_FILE = MODEL_NAME + '.tar.gz'
# DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = 'frozen_inference_graph_33638_truck.pb'
# frozen_inference_graph_33638_truck.pb
# frozen_inference_graph_bus_1017.pb
# frozen_inference_graph_truc_nohardexample_1028.pb
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'label_map.pbtxt')
NUM_CLASSES = 7
JILV = 0.6
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`,
# we know that this corresponds to `airplane`. Here we use internal utility functions,
# but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def load_image_into_numpy_array2(image):
return np.array(image).reshape((480, 640, 3)).astype(np.uint8)
# Detection
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images/*.jpg'
# TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR)]
TEST_IMAGE_PATHS = glob.glob(PATH_TO_TEST_IMAGES_DIR)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
'''for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:'''
session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session(config=session_config) as sess:
with tf.device('/gpu:0'):
# Get handles to input and output tensors
start = time.time()
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, JILV), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
# output_dict["detection_boxes"], ' '
# , output_dict["detection_scores"]
# for i in output_dict.__len__():
# print(output_dict["detection_scores"][i])
# output_dict["detection_boxes"]
end = time.time() - start
print("cost:", end, 's')
return output_dict
import os
label = ["open_eyes", "close_eyes", "phone", "smoke", "yawn", "side_face", "face"]
count = 0
# cap = cv2.VideoCapture(0)
for image in sorted(TEST_IMAGE_PATHS):
# cv2.waitKey(1)
# ret, frame = cap.read()
# image = tf.image.resize_images(image,(300,300,3))
# print(os.path.basename(image))
str1 = os.path.basename(image)
image = Image.open(image)
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
# image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
# print(list(output_dict['detection_scores']))
im_width, im_height = image.size
listString = "<annotation>\n" + \
"<folder>dabai</folder>\n" + \
"<filename>" + str1 + "</filename>\n" + \
"<path>\n" + \
"C:\\dabai\\" + str1 + "\n" + \
"</path>\n" + \
"<source>\n" + \
"<database>Unknown</database>\n" + \
"</source>\n" + \
"<size>\n" + \
"<width>" + im_width + "</width>\n" + \
"<height>" + im_height + "</height>\n" + \
"<depth>3</depth>\n" + \
"</size>\n" + \
"<segmented>0</segmented>\n"
isHave = False
for indx, asdf in enumerate(output_dict["detection_scores"]):
if (asdf > JILV):
isHave = True
ymin, xmin, ymax, xmax = tuple(output_dict["detection_boxes"][indx].tolist())
left, right, top, bottom = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
# print(xmin * im_width, xmax * im_width,
# ymin * im_height, ymax * im_height)
listString = listString + "<object>\n" \
"<name>" + label[output_dict["detection_classes"][indx] - 1] + "</name>\n" \
"<pose>Unspecified</pose>\n" \
"<truncated>0</truncated>\n" \
"<difficult>0</difficult>\n" \
"<bndbox>\n" \
"<xmin>%d</xmin>\n" \
"<ymin>%d</ymin>\n" \
"<xmax>%d</xmax>\n" \
"<ymax>%d</ymax>\n" \
"</bndbox>\n" \
"</object>\n" % (
left, top, right, bottom,)
listString = listString+"</annotation>"
if (isHave != True):
continue
print(count)
fp = open("./test_images/" + str1.replace(".jpg", "") + '.xml', "w")
fp.write(listString)
fp.close()
count += 1
# cap.release()
# cv2.destroyAllWindows()