-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ncut_kway.m
119 lines (108 loc) · 3.67 KB
/
Ncut_kway.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function [LG,L,time]=Ncut_kway(X,nCluster)
% K-way clustering for multigraph.
% Input:
% X, the eigenvectors extracted by Ncut
% nCluster, the desired cluster number
% Output:
% LG, the group parcellation results
% L, the individial parcellation results generated simutaneously
% time, the elapsed time
%
% See (Yu and Shi, 2003) for the multi-class spectral clustering (MSC)
% algorithm and (Shen et al., 2013) for the multigraph K-way spectral
% clustering (MKSC) algorithm.
%
% 2014-10-14 09:56:30
% SLIC: a whole brain parcellation toolbox
% Copyright (C) 2016 Jing Wang
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
tic;
X=X(:,end-nCluster+1:end,:); % select only eigenvectors with the K smallest nontrivial eigenvalues
[nVoxel,nCluster,nSub]=size(X);
% normalize Xs so that each row has unit norm
for iSub=1:nSub
Xs=X(:,:,iSub); % eigen vectors of the iSub-th subject
Xs=Xs./repmat(sqrt(sum(Xs.^2,2)),[1,nCluster]);
X(:,:,iSub)=Xs;
end
% initialize R
R=zeros(nCluster,nCluster,nSub); % rotation matrix
% rng(1);
% RN=randi(nVoxel,[nSub,1]); % a random number in [1:nVoxel] for each subject
RN=ones(nSub,1); % a fixed initialization
for iSub=1:nSub
Xs=X(:,:,iSub);
Rs=R(:,:,iSub);
Rs(:,1)=Xs(RN(iSub),:);
sigma=zeros(nVoxel,1); % "c" in Yu and Shi, 2003. Replaced by sigma here to avoid misusing.
for iCluster=2:nCluster
sigma=sigma+abs(Xs*Rs(:,iCluster-1));
[~,ix]=min(sigma);
Rs(:,iCluster)=Xs(ix,:)';
end
R(:,:,iSub)=Rs;
end
TV=1; % trace value
DF=1; % the difference between the current trace value and the previous trace value
Iter=0; % iteration number
epsilon=1e-4;
while DF>epsilon
Iter=Iter+1;
TVP=TV; % previous trace value
% step 1: given R, solve YG
Z=zeros(nVoxel,nCluster);
Y=zeros(nVoxel,nCluster,nSub); % individual parcellation result
YG=zeros(nVoxel,nCluster); % groupwise parcellation result
for iSub=1:nSub
Xs=X(:,:,iSub);
Rs=R(:,:,iSub);
Ys=Xs*Rs;
Z=Z+Ys;
Y(:,:,iSub)=Ys;
end
[~,ix]=max(Z,[],2);
for i=1:nVoxel
YG(i,ix(i))=1;
end
% step 2: given YG, solve R
S=zeros(nCluster,nCluster,nSub);
for iSub=1:nSub
Xs=X(:,:,iSub);
[Us,Ss,Vs]=svd(YG'*Xs);
Rs=Vs*Us';
R(:,:,iSub)=Rs;
S(:,:,iSub)=Ss;
end
% check for convergence
TV=0;
for iSub=1:nSub
Ss=S(:,:,iSub);
TV=TV+trace(Ss);
end
% DF=abs(TV-TVP);
DF=abs(TV-TVP)/abs(TV);
fprintf('Iteration number: %d, residual error: %0.4f. \n',Iter,DF);
end
% groupwise parcellation result
[~,LG]=max(YG,[],2); % vector form of the label
fprintf('Actual number of clusters in group level: %d. \n', length(unique(LG)));
% individual parcellation result
L=zeros(size(Y,1),nSub);
for iSub=1:nSub
[~,tmp]=max(Y(:,:,iSub),[],2);
L(:,iSub)=tmp;
end
time=toc/3600;
fprintf('Time to run K-way clustering: %0.2f hours. \n',time);