-
Notifications
You must be signed in to change notification settings - Fork 0
/
02 BIT (RANGE update , POINT query).cpp
198 lines (154 loc) · 3.76 KB
/
02 BIT (RANGE update , POINT query).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/**
Fenwick Tree
============
Description
-----------
A data structure to quickly do the following -
1 . Point Update
2 . Prefix Sum Array Update
Operations
----------
- Add value to an index : O(logN)
- Calculate Prefix Sum upto an index : O(logN)
Modification to do range updates
--------------------------------
This is the same trick as we do for arrays .
Imagine there are a lot of range updates and we only have to answer query after all updates .
Then , we can do as follows :
- Update a[l] = +value , a[r+1] = -value for each update
- After all update operation calculate Prefix Sum Array
The Prefix Sum Array will contain the value for each index after all update operations .
If there were any update after query we again would have to calculate the Prefix Sum Array again in O(N) .
Fenwick Tree allows us to do both this Point Update and Prefix Sum Array Update in O(logN) time .
**/
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define F first
#define S second
#define ALL(x) (x).begin(), (x).end()
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#ifndef ONLINE_JUDGE
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#else
#define DBG(x)
#define endl "\n"
#endif
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e5+7;
/** BIT / FENWICK TREE **/
/*** 1 based indexing ***/
struct Fenwick{
vector<LL>BIT;
int N;
Fenwick (int n) : BIT(n+1,0) , N(n) {}
inline int LSB(int x) {return x&(-x);} /// find the number with first bit set
/// POINT update : adds val to index idx
void add(int idx,LL val)
{
for(int i = idx ; i<=N ; i += LSB(i)) /// adding LSB , jumping to next segment covered by this index
BIT[i] += val;
}
/// prefix sum upto index idx
LL pref(int idx)
{
LL sum = 0;
for(int i = idx ; i>0 ; i -= LSB(i)) /// removing LSB , jumping to next segment covering upto index
sum += BIT[i];
return sum;
}
/// RANGE update : adds val to [l,r]
void update(int l,int r,LL val)
{
add(l,val);
add(r+1,-val);
}
void debug()
{
cout<<"Prefix Sum Array : ";
for(int i=1;i<=N;i++)
cout<<pref(i)<<" ";
cout<<endl;
}
};
int main()
{
optimizeIO();
int n,q;
cin>>n>>q;
Fenwick f(n);
vector<LL>ara(n+1);
for(int i=1;i<=n;i++)
{
cin>>ara[i];
f.update(i,i,ara[i]);
}
while(q--)
{
f.debug();
int type;
cin>>type;
if(type==1) /** POINT Query **/
{
int idx;
cin>>idx;
cout<<f.pref(idx)<<endl;
}
else if(type==2) /** RANGE update **/
{
int l,r;
LL val;
cin>>l>>r>>val;
f.update(l,r,val);
}
}
return 0;
}
/**
10 10
3 4 0 0 0 0 1 2 3 3
2 5 7 12
1 4
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}