-
Notifications
You must be signed in to change notification settings - Fork 0
/
11 Largest Square Matrix with all 1.cpp
124 lines (93 loc) · 2.37 KB
/
11 Largest Square Matrix with all 1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/**
Problem : Largest Square Matrix with all 1's
**/
/**Which of the favors of your Lord will you deny ?**/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>
using indexed_set = tree<
TIn, null_type, less<TIn>,
rb_tree_tag, tree_order_statistics_node_update>;
/*
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
*/
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e3+7;
const LL LINF = 1e17;
string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
/** 1 based indexing **/
/**
dp[i][j] = Largest Square Matrix with all 1's ending at ara[i][j]
For a square matrix of n*n , the left,top and top left is a n-1*n-1 square matrix.
So , dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]) // if ara[i][j] = 1
Here the minimum is considered because all 3 corner has to have the same number of 1's , otherwise adding one element
won't make it a square matrix with all 1's
**/
int dp[nmax][nmax];
int main()
{
optimizeIO();
int r = 8 , c = 6;
int ara[r+1][c+1] =
{
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 1, 1 },
{ 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 1, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 1 },
{ 0, 1, 0, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 0, 1, 1 }
};
int max_square_n = 0;
for(int i=1;i<=r;i++)
{
for(int j=1;j<=c;j++)
{
if(ara[i][j]==1)
{
dp[i][j] = 1 + min(dp[i-1][j-1],min(dp[i][j-1],dp[i-1][j]));
max_square_n = max(max_square_n,dp[i][j]);
}
}
}
cout<<"MAx Square Size : "<<max_square_n<<endl;
// for(int i=1;i<=r;i++)
// {
// for(int j=1;j<=c;j++)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// }
return 0;
}