SRAM Partitioning

SRAM split into two parts

Areas for static regions (RAMFUNC, etc.)
* Special permissions, depending on usage

Areas marked for dynamic MPU re-programming
* l.e. for Thread stacks, application partitions, guards, etc.
* PRIV-RW/nPRIV-NA permissions

This configuration shall not change after boot

The static regions shall have no gaps in between

For optimizing the number of used MPU regions
Can be enforced in the linker

We already have this in the tree

1 MPU index for each Static memory region (maximum 4 in total)
Same for all MPU architectures, as the partitioning is proper

_image_ram_end —p

<SRAM image>—

_app_smem_start or

\ 4

—r m 2 20 m RN

_kernel_ram_start

No-Cache

RAMFUNC

GCOV

_image_ram_start ——»

—— <Marked Areas>

— <Static Regions>

APP/Kernel Memory Partitioning — current state

* During context-switch — program dynamic regions:
* App memory partitions
* Supervisor threads: Guard region
* User threads: PRIV Guard region and User thread stack region

* This configuration shall not change until the next context-switch
* Except for APP partition removal, if applicable

* We do not re-program during system calls

* We already have this in the tree.
* Additional MPU indices required:
« ARMV7-M — 2 + <APP_PARTS>*
« ARMvS-M — 4 + <2x APP_PARTS>**
* NXP -3+ <APP_PARTS>***

* higher-index precedence
** no-overlap

*** OR-policy

_image_ram_end

<Kernel & App> —

_app_smem_start or
_kernel_ram_start

—

~

— m =z o m

0

PRIV Guard

User
Stack

<PRIV Stack>

<User Stack>

—— <App Parts>

Challenges of the current solution

Guards are, simply, wasted SRAM

Guards need to be quite large when we build with CONFIG_FLOAT,
to accommodate the whole exception stack frame

The amount of wasted SRAM is proportional to the number of
threads

Efficient solution requires
* use of as few MPU regions as possible
Use of as little wasted SRAM as possible

_image_ram_end

<Kernel & App> —

_app_smem_start or
_kernel_ram_start

G [—
E
R
N|| PRIV Guard
E
L
User
& Stack
A
P
P

<PRIV Stack>

<User Stack>

—— <App Parts>

Proposal

* |dea:

* Impl

Supervisor threads shall also be sand-boxed into own areas

ementation
Thread stack objects allocated in separate section
Some MPU-programming can occur in system calls

» Assumptions/Prerequisites

Stacks are fully descending

The existing proposal to unify the areas of user and privilege
stacks is implemented

Threads only need access to own, stack, kernel globals (supervisor

threads only) and application memory

_image_ram_end e
K
Threads
E
R
_threads_ram_start——> E
L
<Kernel & App> — Globals
&
A
P
p App
Partitions

_app_smem_start or
_kernel_ram_start

—— <Thread Objects>

—— <Kernel Globals>

—— <App Parts>

Proposal implementation details (1/2)

* MPU re-programming for supervisor threads during
context-switch

* Application partitions (as usual and if applicable)

* The area below the thread’s stack — until the start of the
threads’ linker section — as a ”big” read-only guard

e 2 MPU regions for NXP, ARMv8-M, 1 MPU region for
ARMv7-M

_image_ram_end

<Thread Objects> —

—

_threads_ram_start

nwgogr>m>oxxIT -

R/O
Area

Other threads

—— <Thread Stack>

- Other threads

Proposal implementation details (2/2)

. m,PitJdl;e-programming for user threads during context- MPU re-programming for user threads during system-
* Application partitions (as usual and if applicable) calls
e The user stack area : * Program the whole user thread stack as read-only
_image_ram_end — _image_ram_end —
Other threads Other threads
T T
H } <Thread PRIV Stack> H } <Thread PRIV Stack>
R — : R R
: User : . User
<Thread Objects>— E —— <Thread Stack> : <Thread Objects> — E —— <Thread Stack>
Stack : Stack — R/O
D D
S Other threads : S Other threads
_threads_ram_start | s _threads_ram_start |

2 MPU regions for NXP, ARMv8-M, 1 MPU region for ARMv7-M

