
SRAM Partitioning

• SRAM split into two parts
• Areas for static regions (RAMFUNC, etc.)

• Special permissions, depending on usage

• Areas marked for dynamic MPU re-programming
• I.e. for Thread stacks, application partitions, guards, etc.
• PRIV-RW/nPRIV-NA permissions

• This configuration shall not change after boot

• The static regions shall have no gaps in between
• For optimizing the number of used MPU regions
• Can be enforced in the linker

• We already have this in the tree
• 1 MPU index for each Static memory region (maximum 4 in total)
• Same for all MPU architectures, as the partitioning is proper

K
E
R
N
E
L

&

A
P
P

GCOV

<SRAM image>

RAMFUNC

No-Cache

<Static Regions>

<Marked Areas>

_image_ram_start

_image_ram_end

_app_smem_start or
_kernel_ram_start

APP/Kernel Memory Partitioning – current state

• During context-switch – program dynamic regions:
• App memory partitions
• Supervisor threads: Guard region

• User threads: PRIV Guard region and User thread stack region

• This configuration shall not change until the next context-switch
• Except for APP partition removal, if applicable

• We do not re-program during system calls

• We already have this in the tree.
• Additional MPU indices required:

• ARMv7-M – 2 + <APP_PARTS>*

• ARMv8-M – 4 + <2x APP_PARTS>**

• NXP – 3 + <APP_PARTS>***

* higher-index precedence

** no-overlap

*** OR-policy

K
E
R
N
E
L

&

A
P
P

<Kernel & App> User
Stack

PRIV Guard

<User Stack>

<PRIV Stack>

_image_ram_end

_app_smem_start or
_kernel_ram_start

<App Parts>

Challenges of the current solution

• Guards are, simply, wasted SRAM

• Guards need to be quite large when we build with CONFIG_FLOAT,
to accommodate the whole exception stack frame

• The amount of wasted SRAM is proportional to the number of
threads

• Efficient solution requires
• use of as few MPU regions as possible

• Use of as little wasted SRAM as possible

K
E
R
N
E
L

&

A
P
P

<Kernel & App> User
Stack

PRIV Guard

<User Stack>

<PRIV Stack>

_image_ram_end

_app_smem_start or
_kernel_ram_start

K
E
R
N
E
L

&

A
P
P

<Kernel & App> User
Stack

PRIV Guard

<User Stack>

<PRIV Stack>

_image_ram_end

_app_smem_start or
_kernel_ram_start

<App Parts>

Threads

Globals

App
Partitions

Proposal

• Idea:

• Supervisor threads shall also be sand-boxed into own areas

• Implementation
• Thread stack objects allocated in separate section

• Some MPU-programming can occur in system calls

• Assumptions/Prerequisites
• Stacks are fully descending

• The existing proposal to unify the areas of user and privilege
stacks is implemented

• Threads only need access to own, stack, kernel globals (supervisor
threads only) and application memory

K
E
R
N
E
L

&

A
P
P

<Kernel & App> <Kernel Globals>

<Thread Objects>

_image_ram_end

_app_smem_start or
_kernel_ram_start

<App Parts>

_threads_ram_start

Proposal implementation details (1/2)

• MPU re-programming for supervisor threads during
context-switch

• Application partitions (as usual and if applicable)

• The area below the thread’s stack – until the start of the
threads’ linker section – as a ”big” read-only guard

• 2 MPU regions for NXP, ARMv8-M, 1 MPU region for
ARMv7-M

T
H
R
E
A
D
S

<Thread Objects>

_image_ram_end

_threads_ram_start

R/O
Area

<Thread Stack>

Other threads

Other threads

Proposal implementation details (2/2)

• MPU re-programming for user threads during system-
calls

• Program the whole user thread stack as read-only

T
H
R
E
A
D
S

<Thread Objects>

_image_ram_end

_threads_ram_start

User
Stack

<Thread Stack>

Other threads

Other threads

<Thread PRIV Stack>

2 MPU regions for NXP, ARMv8-M, 1 MPU region for ARMv7-M

• MPU re-programming for user threads during context-
switch

• Application partitions (as usual and if applicable)
• The user stack area

T
H
R
E
A
D
S

<Thread Objects>

_image_ram_end

_threads_ram_start

User
Stack – R/O

<Thread Stack>

Other threads

Other threads

<Thread PRIV Stack>

