This implements training of hdn.
export PYTHONPATH=/path/to/hdn:$PYTHONPATH
Prepare training dataset, detailed preparations are listed in training_dataset directory.
Download pretrained backbones from here and put them in project_root/pretrained_models
directory
Refer to Pytorch distributed training for detailed description.
cd experiments/tracker_homo_config
set desired config in proj_e2e_GOT_unconstrained_v2.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3
python -m torch.distributed.launch \
--nproc_per_node=4 \
--master_port=8845 \
../../tools/train.py --cfg proj_e2e_GOT_unconstrained_v2.yaml