Skip to content

Latest commit

 

History

History
25 lines (18 loc) · 1.4 KB

README.md

File metadata and controls

25 lines (18 loc) · 1.4 KB

AutoAssign: Differentiable Label Assignment for Dense Object Detection

Introduction

@article{zhu2020autoassign,
  title={AutoAssign: Differentiable Label Assignment for Dense Object Detection},
  author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian},
  journal={arXiv preprint arXiv:2007.03496},
  year={2020}
}

Results and Models

Backbone Style Lr schd Mem (GB) box AP Config Download
R-50 caffe 1x 4.08 40.4 config model | log

Note:

  1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation.
  2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch.