-
Notifications
You must be signed in to change notification settings - Fork 13
/
ncl_imagenet.py
423 lines (369 loc) · 19.1 KB
/
ncl_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD, lr_scheduler
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from utils.util import BCE, PairEnum, cluster_acc, Identity, AverageMeter, seed_torch
from utils import ramps
from torchvision.models.resnet import BasicBlock
from data.imagenetloader import ImageNetLoader30, ImageNetLoader882_30Mix, ImageNetLoader882, ImageNetLoader30_pre, ImageNetLoader882_30Mix_pre, ImageNetLoader882_pre
from tqdm import tqdm
import numpy as np
import math
import os
import warnings
from models.NCL import NCLMemory
warnings.filterwarnings("ignore", category=UserWarning)
class ResNet(nn.Module):
def __init__(self, block, layers, num_labeled_classes=10, num_unlabeled_classes=10):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.head1= nn.Linear(512 * block.expansion, num_labeled_classes)
self.head2= nn.Linear(512 * block.expansion, num_unlabeled_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, output='None'):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
out = x
# out = F.relu(out) #add ReLU to benifit ranking
feat = out
out1 = self.head1(out)
feat_norm = F.normalize(out)
out2 = self.head2(out)
if output == 'feat_logit':
return feat, feat_norm, out1, out2
else:
return out1, out2
class data_prefetcher():
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
# self.mean = torch.tensor([0.485, 0.456, 0.406]).cuda().view(1, 3, 1, 1)
self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1, 3, 1, 1)
# self.std = torch.tensor([0.229, 0.224, 0.225]).cuda().view(1, 3, 1, 1)
self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1, 3, 1, 1)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.mean = self.mean.half()
# self.std = self.std.half()
self.preload()
def preload(self):
try:
self.next_input, self.next_target, self.next_idx = next(self.loader)
except StopIteration:
self.next_input = None
self.next_target = None
self.next_idx = None
return
with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
self.next_target = self.next_target.cuda(non_blocking=True)
self.next_idx = self.next_idx.cuda(non_blocking=True)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.next_input = self.next_input.half()
# else:
self.next_input = self.next_input.float()
self.next_input = self.next_input.sub_(self.mean).div_(self.std)
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
input = self.next_input
target = self.next_target
idx = self.next_idx
if input is not None:
input.record_stream(torch.cuda.current_stream())
if target is not None:
target.record_stream(torch.cuda.current_stream())
if idx is not None:
idx.record_stream(torch.cuda.current_stream())
self.preload()
return input, target, idx
class data_prefetcher2():
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
# self.mean = torch.tensor([0.485, 0.456, 0.406]).cuda().view(1, 3, 1, 1)
self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1, 3, 1, 1)
# self.std = torch.tensor([0.229, 0.224, 0.225]).cuda().view(1, 3, 1, 1)
self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1, 3, 1, 1)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.mean = self.mean.half()
# self.std = self.std.half()
self.preload()
def preload(self):
try:
self.next_input, self.next_input1, self.next_target, self.next_idx = next(self.loader)
except StopIteration:
self.next_input = None
self.next_input1 = None
self.next_target = None
self.next_idx = None
return
with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
self.next_input1 = self.next_input1.cuda(non_blocking=True)
self.next_target = self.next_target.cuda(non_blocking=True)
self.next_idx = self.next_idx.cuda(non_blocking=True)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.next_input = self.next_input.half()
# else:
self.next_input = self.next_input.float()
self.next_input = self.next_input.sub_(self.mean).div_(self.std)
self.next_input1 = self.next_input1.float()
self.next_input1 = self.next_input1.sub_(self.mean).div_(self.std)
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
input = self.next_input
input1 = self.next_input1
target = self.next_target
idx = self.next_idx
if input is not None:
input.record_stream(torch.cuda.current_stream())
if input1 is not None:
input1.record_stream(torch.cuda.current_stream())
if target is not None:
target.record_stream(torch.cuda.current_stream())
if idx is not None:
idx.record_stream(torch.cuda.current_stream())
self.preload()
return input, input1, target, idx
def train(model, train_loader, unlabeled_eval_loader, start_epoch, args):
print ('Start Neighborhood Contrastive Learning:')
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
criterion1 = nn.CrossEntropyLoss()
criterion2 = BCE()
for epoch in range(start_epoch, args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
prefetcher = data_prefetcher2(train_loader)
num_iter = len(train_loader)
# for batch_idx, ((x, x_bar), label, idx) in enumerate(tqdm(train_loader)):
for batch_idx in tqdm(range(num_iter)):
x, x_bar, label, idx = prefetcher.next()
x, x_bar, label = x.to(device), x_bar.to(device), label.to(device)
feat, feat_q, output1, output2 = model(x, 'feat_logit')
feat_bar, feat_k, output1_bar, output2_bar = model(x_bar, 'feat_logit')
prob1, prob1_bar, prob2, prob2_bar = F.softmax(output1, dim=1), F.softmax(output1_bar, dim=1), F.softmax(
output2, dim=1), F.softmax(output2_bar, dim=1)
mask_lb = idx < train_loader.labeled_length
rank_feat = (feat[~mask_lb]).detach()
if args.bce_type == 'cos':
# default: cosine similarity with threshold
feat_row, feat_col = PairEnum(F.normalize(rank_feat, dim=1))
tmp_distance_ori = torch.bmm(feat_row.view(feat_row.size(0), 1, -1), feat_col.view(feat_row.size(0), -1, 1))
tmp_distance_ori = tmp_distance_ori.squeeze()
target_ulb = torch.zeros_like(tmp_distance_ori).float() - 1
target_ulb[tmp_distance_ori > args.costhre] = 1
elif args.bce_type == 'RK':
# top-k rank statics
rank_idx = torch.argsort(rank_feat, dim=1, descending=True)
rank_idx1, rank_idx2 = PairEnum(rank_idx)
rank_idx1, rank_idx2 = rank_idx1[:, :args.topk], rank_idx2[:, :args.topk]
rank_idx1, _ = torch.sort(rank_idx1, dim=1)
rank_idx2, _ = torch.sort(rank_idx2, dim=1)
rank_diff = rank_idx1 - rank_idx2
rank_diff = torch.sum(torch.abs(rank_diff), dim=1)
target_ulb = torch.ones_like(rank_diff).float().to(device)
target_ulb[rank_diff > 0] = -1
prob1_ulb, _ = PairEnum(prob2[~mask_lb])
_, prob2_ulb = PairEnum(prob2_bar[~mask_lb])
# basic loss
loss_ce = criterion1(output1[mask_lb], label[mask_lb])
loss_bce = criterion2(prob1_ulb, prob2_ulb, target_ulb)
consistency_loss = F.mse_loss(prob1, prob1_bar) + F.mse_loss(prob2, prob2_bar)
loss = loss_ce + loss_bce + w * consistency_loss
# NCL loss for unlabeled data
loss_ncl_ulb = ncl_ulb(feat_q[~mask_lb], feat_k[~mask_lb], label[~mask_lb], epoch, False, ncl_la.memory.clone().detach())
# NCL loss for labeled data
loss_ncl_la = ncl_la(feat_q[mask_lb], feat_k[mask_lb], label[mask_lb], epoch, True)
if epoch > 0:
loss += loss_ncl_ulb * args.w_ncl_ulb + loss_ncl_la * args.w_ncl_la
else:
loss += loss_ncl_la * args.w_ncl_la
# ===================backward=====================
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.save({'optimizer': optimizer.state_dict(), 'model': model.state_dict(),
'epoch': epoch, 'memory': ncl_ulb.state_dict(), 'memory_la': ncl_la.state_dict()}, args.model_dir[:-4] + '_inter.pth')
args.head = 'head2'
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
print('test on unlabeled classes')
test(model, unlabeled_eval_loader, args)
def test(model, test_loader, args):
model.eval()
preds=np.array([])
targets=np.array([])
prefetcher = data_prefetcher(test_loader)
x, label, idx = prefetcher.next()
num_iter = len(test_loader)
for i in tqdm(range(num_iter)):
# for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
output1, output2 = model(x)
if args.head=='head1':
output = output1
else:
output = output2
_, pred = output.max(1)
targets=np.append(targets, label.cpu().numpy())
preds=np.append(preds, pred.cpu().numpy())
x, label, idx = prefetcher.next()
acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
def copy_param(model, pretrain_dir):
pre_dict = torch.load(pretrain_dir)
new=list(pre_dict.items())
dict_len = len(pre_dict.items())
model_kvpair=model.state_dict()
count=0
for key, value in model_kvpair.items():
if count < dict_len:
layer_name,weights=new[count]
model_kvpair[key]=weights
count+=1
else:
break
model.load_state_dict(model_kvpair)
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--device_ids', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3)')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--rampup_length', default=50, type=int)
parser.add_argument('--rampup_coefficient', type=float, default=10.0)
parser.add_argument('--step_size', default=30, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--unlabeled_batch_size', default=128, type=int)
parser.add_argument('--num_labeled_classes', default=882, type=int)
parser.add_argument('--num_unlabeled_classes', default=30, type=int)
parser.add_argument('--dataset_root', type=str, default='./data/datasets/ImageNet/')
parser.add_argument('--exp_root', type=str, default='./data/experiments/')
parser.add_argument('--warmup_model_dir', type=str, default='./data/experiments/pretrained/resnet18_imagenet_classif_882_ICLR18.pth')
parser.add_argument('--topk', default=5, type=int)
parser.add_argument('--model_name', type=str, default='resnet_imagenet')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--unlabeled_subset', type=str, default='A')
parser.add_argument('--w_ncl_la', type=float, default=0.1)
parser.add_argument('--w_ncl_ulb', type=float, default=1.0)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--bce_type', type=str, default='cos')
parser.add_argument('--hard_negative_start', default=3, type=int)
parser.add_argument('--knn', default=-1, type=int)
parser.add_argument('--costhre', type=float, default=0.95)
parser.add_argument('--m_size', default=3000, type=int)
parser.add_argument('--m_t', type=float, default=0.05)
parser.add_argument('--w_pos', type=float, default=0.2)
parser.add_argument('--hard_iter', type=int, default=5)
parser.add_argument('--num_hard', type=int, default=400)
parser.add_argument('--fast_dataloader', type=bool, default=True)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
runner_name = os.path.basename(__file__).split(".")[0]
model_dir = os.path.join(args.exp_root, runner_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
args.model_dir = model_dir+'/'+'{}_{}.pth'.format(args.model_name, args.unlabeled_subset)
model = ResNet(BasicBlock, [2,2,2,2], args.num_labeled_classes, args.num_unlabeled_classes)
model = nn.DataParallel(model, args.device_ids).to(device)
model = copy_param(model, args.warmup_model_dir)
num_classes = args.num_labeled_classes + args.num_unlabeled_classes
for name, param in model.named_parameters():
if 'head' not in name and 'layer4' not in name:
param.requires_grad = False
if args.fast_dataloader:
# use fast data loader
mix_train_loader = ImageNetLoader882_30Mix_pre(args.batch_size, num_workers=32, path=args.dataset_root, unlabeled_subset=args.unlabeled_subset, aug='twice_pre', shuffle=True, subfolder='train', unlabeled_batch_size=args.unlabeled_batch_size)
labeled_eval_loader = ImageNetLoader882_pre(args.batch_size, num_workers=8, path=args.dataset_root, aug='none_pre', shuffle=False, subfolder='val')
unlabeled_eval_loader = ImageNetLoader30_pre(args.batch_size, num_workers=32, path=args.dataset_root, subset=args.unlabeled_subset, aug='none_pre', shuffle=False, subfolder='train')
else:
# use slow data loader
mix_train_loader = ImageNetLoader882_30Mix(args.batch_size, num_workers=32, path=args.dataset_root,
unlabeled_subset=args.unlabeled_subset, aug='twice',
shuffle=True, subfolder='train',
unlabeled_batch_size=args.unlabeled_batch_size)
labeled_eval_loader = ImageNetLoader882(args.batch_size, num_workers=8, path=args.dataset_root,
aug='none', shuffle=False, subfolder='val')
unlabeled_eval_loader = ImageNetLoader30(args.batch_size, num_workers=32, path=args.dataset_root,
subset=args.unlabeled_subset, aug='none', shuffle=False,
subfolder='train')
ncl_ulb = NCLMemory(512, 3000, args.m_t, args.num_unlabeled_classes, args.knn, args.w_pos, args.hard_iter, args.num_hard, args.hard_negative_start).to(device)
ncl_la = NCLMemory(512, 30000, args.m_t, args.num_labeled_classes, args.knn, args.w_pos, args.hard_iter, args.num_hard, args.hard_negative_start).to(device)
if args.resume:
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
ncl_ulb.load_state_dict(checkpoint['memory'])
ncl_la.load_state_dict(checkpoint['memory_la'])
print('Start from Epoch:{}'.format(start_epoch))
else:
start_epoch = 0
if args.mode == 'train':
train(model, mix_train_loader, unlabeled_eval_loader, start_epoch, args)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
else:
print("model loaded from {}.".format(args.model_dir))
model.load_state_dict(torch.load(args.model_dir))
print('test on labeled classes')
args.head = 'head1'
test(model, labeled_eval_loader, args)
print('test on unlabeled classes')
args.head = 'head2'
test(model, unlabeled_eval_loader, args)