forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metric.py
81 lines (70 loc) Β· 2.51 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from sklearn.metrics import f1_score, classification_report
from paddle.metric import Metric
from paddlenlp.utils.log import logger
class MetricReport(Metric):
"""
F1 score for multi-label text classification task.
"""
def __init__(self, name="MetricReport", average="micro"):
super(MetricReport, self).__init__()
self.average = average
self._name = name
self.reset()
def reset(self):
"""
Resets all of the metric state.
"""
self.y_prob = None
self.y_true = None
def f1_score(self, y_prob):
"""
Compute micro f1 score and macro f1 score
"""
threshold = 0.5
self.y_pred = y_prob > threshold
micro_f1_score = f1_score(y_pred=self.y_pred, y_true=self.y_true, average="micro")
macro_f1_score = f1_score(y_pred=self.y_pred, y_true=self.y_true, average="macro")
return micro_f1_score, macro_f1_score
def update(self, probs, labels):
"""
Update the probability and label
"""
if self.y_prob is not None:
self.y_prob = np.append(self.y_prob, probs.numpy(), axis=0)
else:
self.y_prob = probs.numpy()
if self.y_true is not None:
self.y_true = np.append(self.y_true, labels.numpy(), axis=0)
else:
self.y_true = labels.numpy()
def accumulate(self):
"""
Returns micro f1 score and macro f1 score
"""
micro_f1_score, macro_f1_score = self.f1_score(y_prob=self.y_prob)
return micro_f1_score, macro_f1_score
def report(self):
"""
Returns classification report
"""
self.y_pred = self.y_prob > 0.5
logger.info("classification report:\n" + classification_report(self.y_true, self.y_pred, digits=4))
def name(self):
"""
Returns metric name
"""
return self._name