-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
147 lines (125 loc) · 5.05 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2024-12-11 17:17:41
import warnings
warnings.filterwarnings("ignore")
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from omegaconf import OmegaConf
from sampler_invsr import InvSamplerSR
from utils import util_common
from utils import util_image
from basicsr.utils.download_util import load_file_from_url
def get_configs(num_steps=1, chopping_size=128, seed=12345):
configs = OmegaConf.load("./configs/sample-sd-turbo.yaml")
if num_steps == 1:
configs.timesteps = [200,]
elif num_steps == 2:
configs.timesteps = [200, 100]
elif num_steps == 3:
configs.timesteps = [200, 100, 50]
elif num_steps == 4:
configs.timesteps = [200, 150, 100, 50]
elif num_steps == 5:
configs.timesteps = [250, 200, 150, 100, 50]
else:
assert num_steps <= 250
configs.timesteps = np.linspace(
start=250, stop=0, num=num_steps, endpoint=False, dtype=np.int64()
).tolist()
print(f'Setting timesteps for inference: {configs.timesteps}')
# path to save Stable Diffusion
sd_path = "./weights"
util_common.mkdir(sd_path, delete=False, parents=True)
configs.sd_pipe.params.cache_dir = sd_path
# path to save noise predictor
started_ckpt_name = "noise_predictor_sd_turbo_v5.pth"
started_ckpt_dir = "./weights"
util_common.mkdir(started_ckpt_dir, delete=False, parents=True)
started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name
if not started_ckpt_path.exists():
load_file_from_url(
url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth",
model_dir=started_ckpt_dir,
progress=True,
file_name=started_ckpt_name,
)
configs.model_start.ckpt_path = str(started_ckpt_path)
configs.bs = 1
configs.seed = 12345
configs.basesr.chopping.pch_size = chopping_size
configs.basesr.chopping.extra_bs = 4
return configs
def predict(in_path, num_steps=1, chopping_size=128, seed=12345):
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=12345)
sampler = InvSamplerSR(configs)
out_dir = Path('invsr_output')
if not out_dir.exists():
out_dir.mkdir()
sampler.inference(in_path, out_path=out_dir, bs=1)
out_path = out_dir / f"{Path(in_path).stem}.png"
assert out_path.exists(), 'Super-resolution failed!'
im_sr = util_image.imread(out_path, chn="rgb", dtype="uint8")
return im_sr, str(out_path)
title = "Arbitrary-steps Image Super-resolution via Diffusion Inversion"
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/InvSR' target='_blank'><b>Arbitrary-steps Image Super-resolution via Diffuion Inversion</b></a>.<br>
🔥 InvSR is an image super-resolution method via Diffusion Inversion, supporting arbitrary sampling steps.<br>
"""
article = r"""
If you've found InvSR useful for your research or projects, please show your support by ⭐ the <a href='https://github.com/zsyOAOA/InvSR' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/InvSR?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/InvSR)
---
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{yue2023resshift,
title={ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting},
author={Yue, Zongsheng and Wang, Jianyi and Loy, Chen Change},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year={2023},
volume = {36},
pages = {13294--13307},
}
```
📋 **License**
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/InvSR/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to contact me via <b>zsyzam@gmail.com</b>.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/InvSR)
"""
demo = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="filepath", label="Input: Low Quality Image"),
gr.Dropdown(
choices=[1,2,3,4,5],
value=1,
label="Number of steps",
),
gr.Dropdown(
choices=[128, 256],
value=128,
label="Chopping size",
),
gr.Number(value=12345, precision=0, label="Ranom seed")
],
outputs=[
gr.Image(type="numpy", label="Output: High Quality Image"),
gr.File(label="Download the output")
],
title=title,
description=description,
article=article,
examples=[
['./testdata/RealSet80/29.jpg', 3, 128, 12345],
['./testdata/RealSet80/32.jpg', 1, 128, 12345],
['./testdata/RealSet80/0030.jpg', 1, 128, 12345],
['./testdata/RealSet80/2684538-PH.jpg', 1, 128, 12345],
['./testdata/RealSet80/oldphoto6.png', 1, 128, 12345],
]
)
demo.queue(max_size=5)
demo.launch(share=True)