Skip to content

The official code for paper "EasyGen: Easing Multimodal Generation with a Bidirectional Conditional Diffusion Model and LLMs"

Notifications You must be signed in to change notification settings

xiangyu-mm/EasyGen

Repository files navigation

EasyGen

The official code for paper "Making Multimodal Generation Easier: When Diffusion Models Meet LLMs"

image

We present EasyGen, an efficient model designed to enhance multimodal understanding and generation by harnessing the capabilities of diffusion models and large language models (LLMs). Unlike existing multimodal models that predominately depend on encoders like CLIP or ImageBind and need ample amounts of training data to bridge the gap between modalities, EasyGen is built upon a bidirectional conditional diffusion model named BiDiffuser, which promotes more efficient interactions between modalities. EasyGen handles image-to-text generation by integrating BiDiffuser and an LLM via a simple projection layer. Unlike most existing multimodal models that are limited to generating text responses, EasyGen can also facilitate text-to-image generation by leveraging the LLM to create textual descriptions, which can be interpreted by BiDiffuser to generate appropriate visual responses. Extensive quantitative and qualitative experiments demonstrate the effectiveness of EasyGen, whose training can be easily achieved in a lab setting.

image

Model EasyGen InstructBLIP BLIP2 LLaVA Emu
Training Images 173K 16M 129M 753K 2B
Image-Captioning 145.7 140.7 145.2 30.0 117.7

The performance is evaluated on the MS-COCO Karpathy dataset and measured by the CIDEr metric.

Dependency

pip install -r requirements.txt

Pretrain (feature alignment)

bash train_vicuna_7B.sh

CUDA_VISIBLE_DEVICES=1 torchrun --master_port=20008 train_mem.py \
    --model_name_or_path /home/data2/xiangyu/Code/EasyGen/Tuning_for_LLaVA_only_MLP \
    --tune_mlp True \
    --freeze_backbone True \
    --freeze_mlp False \
    --data_path data/dummy_conversation.json \
    --bf16 True \
    --output_dir pretrain_only_MLP \
    --num_train_epochs 1 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "steps" \
    --eval_steps 150000 \
    --save_strategy "steps" \
    --save_steps 500 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.04 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 2048 \
    --gradient_checkpointing True \
    --lazy_preprocess True \
    --remove_unused_columns False \

fastchat/train/train.py

line 703:

train_dataset = pre_dataset + caption_dataset

Instruct-tuning

bash train_vicuna_7B.sh

CUDA_VISIBLE_DEVICES=0,1 torchrun --master_port=20008 train_mem.py \
    --model_name_or_path /home/data2/xiangyu/Code/EasyGen/Tuning_for_LLaVA_only_MLP \
    --tune_mlp True \
    --freeze_backbone False \
    --freeze_mlp False \
    --data_path data/dummy_conversation.json \
    --bf16 True \
    --output_dir pretrain_only_MLP \
    --num_train_epochs 1 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "steps" \
    --eval_steps 150000 \
    --save_strategy "steps" \
    --save_steps 500 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.04 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 2048 \
    --gradient_checkpointing True \
    --lazy_preprocess True \
    --remove_unused_columns False \
    --fsdp "full_shard auto_wrap" \
    --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \

fastchat/train/train.py

line 703:

train_dataset = qa_dataset + dialog_dataset + vqav2_dataset + train_dataset + llava_dataset

Lora

We also provide the Lora method to train EasyGen. To use lora, please run

bash train_vicuna_7B_lora.sh

Also, you need to change the 10 line in train_mem.py

from fastchat.train.train_lora import train

The inference code of lora also are different, please use:

python -m fastchat.serve.inference_llama

Download weights

You can download our trained models from:

https://huggingface.co/xiangyu556677/EasyGen

Inference

By using this command, EasyGen can do image ground conversation:

python -m fastchat.serve.inference_llama

Before using this command, please download lora_weight and LLM's original weight from https://huggingface.co/xiangyu556677/EasyGen. Also, you need to change the line 671, 677 and 682 to your own root. As for BiDiffuser's weight, please according to UniDiffuser to download relevant weight (such as AutoKL and clip's weight) and change the line 649 (the weight of BiDiffuser) to your own root. By using this command, EasyGen is trained on multimodal dialogue conversation and can generate images:

python -m fastchat.serve.inference_easygen

Acknowledgement

  • UniDiffuser The diffusion module of EasyGen, BiDiffuser, is developed based on UniDiffuser!
  • FastChat This repository is built upon FastChat!

About

The official code for paper "EasyGen: Easing Multimodal Generation with a Bidirectional Conditional Diffusion Model and LLMs"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published