forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
81 lines (69 loc) Β· 2.42 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddlenlp.transformers import GPTForGreedyGeneration, GPTChineseTokenizer, GPTTokenizer
MODEL_CLASSES = {
"gpt-cn": (GPTForGreedyGeneration, GPTChineseTokenizer),
"gpt": (GPTForGreedyGeneration, GPTTokenizer),
}
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="Path of the trained model to be exported.",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
required=True,
help="The output file prefix used to save the exported inference model.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# Suild model and load trained parameters
tokenizer = tokenizer_class.from_pretrained(args.model_path)
model = model_class.from_pretrained(args.model_path, max_predict_len=32, eol_token_id=tokenizer.eol_token_id)
# Switch to eval model
model.eval()
# Convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(shape=[None, None], dtype="int64"), # input_ids
],
)
# Save converted static graph model
paddle.jit.save(model, args.output_path)
# Also save tokenizer for inference usage
tokenizer.save_pretrained(os.path.dirname(args.output_path))
if __name__ == "__main__":
main()