-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
239 lines (193 loc) · 9.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import sys
import math
class nconv(nn.Module):
def __init__(self):
super(nconv,self).__init__()
def forward(self,x, A):
x = torch.einsum('ncvl,vw->ncwl',(x,A))
return x.contiguous()
class linear(nn.Module):
def __init__(self,c_in,c_out):
super(linear,self).__init__()
self.mlp = torch.nn.Conv2d(c_in, c_out, kernel_size=(1, 1), padding=(0,0), stride=(1,1), bias=True)
def forward(self,x):
return self.mlp(x)
class gcn(nn.Module):
def __init__(self,c_in,c_out,dropout,support_len=3,order=2):
super(gcn,self).__init__()
self.nconv = nconv()
c_in = (order*support_len+1)*c_in
self.mlp = linear(c_in,c_out)
self.dropout = dropout
self.order = order
def forward(self,x,support):
out = [x]
for a in support:
x1 = self.nconv(x,a)
out.append(x1)
for k in range(2, self.order + 1):
x2 = self.nconv(x1,a)
out.append(x2)
x1 = x2
h = torch.cat(out,dim=1)
h = self.mlp(h)
h = F.dropout(h, self.dropout, training=self.training)
return h
class Bi_directional_spatial_relation_learner(nn.Module):
def __init__(self,c_in,c_out,dropout,support_len=3):
super(Bi_directional_spatial_relation_learner,self).__init__()
self.gcn1 = gcn(c_in=c_in,c_out=c_out,dropout=dropout,support_len=support_len)
self.gcn2 = gcn(c_in=c_in,c_out=c_out,dropout=dropout,support_len=support_len)
def forward(self,x,support):
inverse = 1/(x+100) # 10为平滑项,防止出现nan值
x = self.gcn1(x,support)
inverse = self.gcn2(inverse,support)
out = x+0.01*inverse #k0x k1x k2x 中的系数k0 k1 k2,都在各自的gcn中的mlp实现
return out
class Decomposed_temporal_evolution_extractor(nn.Module):
def __init__(self):
super(Decomposed_temporal_evolution_extractor,self).__init__()
self.seasonal_layer = nn.ModuleList()
self.seasonal_number = 3
# 卷积核大小
for i in range(self.seasonal_number):
# 计算 padding 的大小
kernel_size = 2*i+1
padding = math.floor((kernel_size - 1) // 2)
# 定义卷积层,并设置 padding 参数
self.seasonal_layer.append(nn.Conv2d(in_channels=1,
out_channels=1,
kernel_size=(1, kernel_size),
padding=(0,padding)))
self.trend_layer = nn.Linear(12,12)
def forward(self,x):# x B 1 N 12
y_trend,y_seasonal=0.0,0.0
for i in range(self.seasonal_number):
#print(self.seasonal_layer[i](x).shape)
y_seasonal = y_seasonal + self.seasonal_layer[i](x)
y_trend = self.trend_layer(x)
return y_trend.transpose(1,3),y_seasonal.transpose(1,3) # B 1 N 12-> B 12 N 1
class CauSTG(nn.Module):
def __init__(self, device, num_nodes, dropout=0.3, supports=None, gcn_bool=True, addaptadj=True, aptinit=None, in_dim=2,out_dim=12,residual_channels=32,dilation_channels=32,skip_channels=256,end_channels=512,kernel_size=2,blocks=4,layers=2):
super(CauSTG, self).__init__()
self.dropout = dropout
self.blocks = blocks
self.layers = layers
self.gcn_bool = gcn_bool
self.addaptadj = addaptadj
self.filter_convs = nn.ModuleList()
self.gate_convs = nn.ModuleList()
self.residual_convs = nn.ModuleList()
self.skip_convs = nn.ModuleList()
self.bn = nn.ModuleList()
self.gconv = nn.ModuleList()
self.start_conv = nn.Conv2d(in_channels=in_dim,
out_channels=residual_channels,
kernel_size=(1,1))
self.supports = supports
receptive_field = 1
self.supports_len = 0
if supports is not None:
self.supports_len += len(supports)
if gcn_bool and addaptadj:
if aptinit is None:
if supports is None:
self.supports = []
self.nodevec1 = nn.Parameter(torch.randn(num_nodes, 10).to(device), requires_grad=True).to(device)
self.nodevec2 = nn.Parameter(torch.randn(10, num_nodes).to(device), requires_grad=True).to(device)
self.supports_len +=1
else:
if supports is None:
self.supports = []
m, p, n = torch.svd(aptinit)
initemb1 = torch.mm(m[:, :10], torch.diag(p[:10] ** 0.5))
initemb2 = torch.mm(torch.diag(p[:10] ** 0.5), n[:, :10].t())
self.nodevec1 = nn.Parameter(initemb1, requires_grad=True).to(device)
self.nodevec2 = nn.Parameter(initemb2, requires_grad=True).to(device)
self.supports_len += 1
for b in range(blocks):
additional_scope = kernel_size - 1
new_dilation = 1
for i in range(layers):
# dilated convolutions
self.filter_convs.append(nn.Conv2d(in_channels=residual_channels,
out_channels=dilation_channels,
kernel_size=(1,kernel_size),dilation=new_dilation))
self.gate_convs.append(nn.Conv1d(in_channels=residual_channels,
out_channels=dilation_channels,
kernel_size=(1, kernel_size), dilation=new_dilation))
# 1x1 convolution for residual connection
self.residual_convs.append(nn.Conv1d(in_channels=dilation_channels,
out_channels=residual_channels,
kernel_size=(1, 1)))
# 1x1 convolution for skip connection
self.skip_convs.append(nn.Conv1d(in_channels=dilation_channels,
out_channels=skip_channels,
kernel_size=(1, 1)))
self.bn.append(nn.BatchNorm2d(residual_channels))
new_dilation *=2
receptive_field += additional_scope
additional_scope *= 2
if self.gcn_bool:
self.gconv.append(Bi_directional_spatial_relation_learner(dilation_channels,residual_channels,dropout,support_len=self.supports_len))
self.end_conv_1 = nn.Conv2d(in_channels=skip_channels,
out_channels=end_channels,
kernel_size=(1,1),
bias=True)
self.end_conv_2 = nn.Conv2d(in_channels=end_channels,
out_channels=out_dim,
kernel_size=(1,1),
bias=True)
self.receptive_field = receptive_field
self.decomposed_sea_tre = Decomposed_temporal_evolution_extractor()
def forward(self, input):
in_len = input.size(3)
if in_len<self.receptive_field:
x = nn.functional.pad(input,(self.receptive_field-in_len,0,0,0))
else:
x = input
x = self.start_conv(x)
skip = 0
# calculate the current adaptive adj matrix once per iteration
new_supports = None
if self.gcn_bool and self.addaptadj and self.supports is not None:
adp = F.softmax(F.relu(torch.mm(self.nodevec1, self.nodevec2)), dim=1)
new_supports = self.supports + [adp]
# encoder
for i in range(self.blocks * self.layers):
#(dilation, init_dilation) = self.dilations[i]
#residual = dilation_func(x, dilation, init_dilation, i)
residual = x
# dilated convolution
filter = self.filter_convs[i](residual)
filter = torch.tanh(filter)
gate = self.gate_convs[i](residual)
gate = torch.sigmoid(gate)
x = filter * gate
# parametrized skip connection
s = x
s = self.skip_convs[i](s)
try:
skip = skip[:, :, :, -s.size(3):]
except:
skip = 0
skip = s + skip
if self.gcn_bool and self.supports is not None:
if self.addaptadj:
x = self.gconv[i](x, new_supports)
else:
x = self.gconv[i](x,self.supports)
else:
x = self.residual_convs[i](x)
x = x + residual[:, :, :, -x.size(3):]
# B C N T
x = self.bn[i](x)
x = F.relu(skip)
x = F.relu(self.end_conv_1(x))
x = self.end_conv_2(x)
trend,season = self.decomposed_sea_tre(x.transpose(1,3)) # 输入是 B 12 N 1
return x,trend,season