Skip to content

Commit

Permalink
Фикс чего-то (#23)
Browse files Browse the repository at this point in the history
  • Loading branch information
TochkaSlesh authored Mar 13, 2024
1 parent c93d9bd commit 322d490
Showing 1 changed file with 3 additions and 1 deletion.
4 changes: 3 additions & 1 deletion docs/geometry/bissector_property.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,12 +64,14 @@ $\angle$ ACD и $\angle$ DCB - равные, а значит их синусы
Пусть d = CD

S(△ACD) = $\frac{1}{2} \cdot xd \cdot sin \angle ADC = \frac{1}{2} \cdot ad \cdot sin \angle ACD \rightarrow$ <br><br>

$x \cdot sin \angle ADC = a \cdot sin \angle ACD \iff$ <br><br>
$\frac{a}{x} = \frac{sin \angle ADC}{sin \angle ACD}$

Аналогично

S(△BCD) = $\frac{1}{2} \cdot yd \cdot sin \angle BDC = \frac{1}{2} \cdot bd \cdot sin \angle BCD \rightarrow$ <br><br>
$S(△BCD) = \frac{1}{2} \cdot yd \cdot sin \angle BDC = \frac{1}{2} \cdot bd \cdot sin \angle BCD \Rightarrow$ <br><br>

$y \cdot sin \angle BDC = b \cdot sin \angle BCD \iff$ <br><br>
$\frac{b}{y} = \frac{sin \angle BDC}{sin \angle BCD} \iff$ <br><br>
$\frac{b}{y} = \frac{sin \angle ADC}{sin \angle ACD} = \frac{a}{x}$
Expand Down

0 comments on commit 322d490

Please sign in to comment.