BoxMOT: pluggable SOTA tracking modules for segmentation, object detection and pose estimation models
This repo contains a collections of pluggable state-of-the-art multi-object trackers for segmentation, object detection and pose estimation models. For the methods using appearance description, both heavy (CLIPReID) and lightweight state-of-the-art ReID models (LightMBN, OSNet and more) are available for automatic download. We provide examples on how to use this package together with popular object detection models such as: Yolov8, Yolo-NAS and YOLOX.
Tracker | HOTA↑ | MOTA↑ | IDF1↑ |
---|---|---|---|
BoTSORT | 77.8 | 78.9 | 88.9 |
DeepOCSORT | 77.4 | 78.4 | 89.0 |
OCSORT | 77.4 | 78.4 | 89.0 |
HybridSORT | 77.3 | 77.9 | 88.8 |
ByteTrack | 75.6 | 74.6 | 86.0 |
StrongSORT | |||
NOTES: performed on the 10 first frames of each MOT17 sequence. The detector used is ByteTrack's YoloXm, trained on: CrowdHuman, MOT17, Cityperson and ETHZ. Each tracker is configured with its original parameters found in their respective official repository.
Tutorials
* [Yolov8 training (link to external repository)](https://docs.ultralytics.com/modes/train/) * [Deep appearance descriptor training (link to external repository)](https://kaiyangzhou.github.io/deep-person-reid/user_guide.html) * [ReID model export to ONNX, OpenVINO, TensorRT and TorchScript](https://github.com/mikel-brostrom/yolo_tracking/wiki/ReID-multi-framework-model-export) * [Evaluation on custom tracking dataset](https://github.com/mikel-brostrom/yolo_tracking/wiki/How-to-evaluate-on-custom-tracking-dataset) * [ReID inference acceleration with Nebullvm](https://colab.research.google.com/drive/1APUZ1ijCiQFBR9xD0gUvFUOC8yOJIvHm?usp=sharing)Experiments
In inverse chronological order:
- Centroid-based cost function added to OCSORT and DeepOCSORT (suitable for: small and/or high speed objects and low FPS videos) (Januari 2024)
- Custom Ultralytics pacakge updated from 8.0.124 to 8.0.224 (December 2023)
- HybridSORT available (August 2023)
- SOTA CLIP-ReID people and vehicle models available (August 2023)
Today's multi-object tracking options are heavily dependant on the computation capabilities of the underlaying hardware. BOXMOT provides a great variety of setup options that meet different hardware limitations: CPU only, low memory GPUs... Everything is designed with simplicity and flexibility in mind. If you don't get good tracking results on your custom dataset with the out-of-the-box tracker configurations, use the examples/evolve.py
script for tracker hyperparameter tuning.
Start with Python>=3.8 environment.
If you want to run the YOLOv8, YOLO-NAS or YOLOX examples:
git clone https://github.com/mikel-brostrom/yolo_tracking.git
cd yolo_tracking
pip install -v -e .
but if you only want to import the tracking modules you can simply:
pip install boxmot
Tracking
Yolo models
$ python examples/track.py --yolo-model yolov8n # bboxes only
python examples/track.py --yolo-model yolo_nas_s # bboxes only
python examples/track.py --yolo-model yolox_n # bboxes only
yolov8n-seg # bboxes + segmentation masks
yolov8n-pose # bboxes + pose estimation
Tracking methods
$ python examples/track.py --tracking-method deepocsort
strongsort
ocsort
bytetrack
botsort
Tracking sources
Tracking can be run on most video formats
$ python examples/track.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Select ReID model
Some tracking methods combine appearance description and motion in the process of tracking. For those which use appearance, you can choose a ReID model based on your needs from this ReID model zoo. These model can be further optimized for you needs by the reid_export.py script
$ python examples/track.py --source 0 --reid-model lmbn_n_cuhk03_d.pt # lightweight
osnet_x0_25_market1501.pt
mobilenetv2_x1_4_msmt17.engine
resnet50_msmt17.onnx
osnet_x1_0_msmt17.pt
clip_market1501.pt # heavy
clip_vehicleid.pt
...
Filter tracked classes
By default the tracker tracks all MS COCO classes.
If you want to track a subset of the classes that you model predicts, add their corresponding index after the classes flag,
python examples/track.py --source 0 --yolo-model yolov8s.pt --classes 16 17 # COCO yolov8 model. Track cats and dogs, only
Here is a list of all the possible objects that a Yolov8 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zero
MOT compliant results
Can be saved to your experiment folder runs/track/exp*/
by
python examples/track.py --source ... --save-mot
Evaluation
Evaluate a combination of detector, tracking method and ReID model on standard MOT dataset or you custom one by
$ python3 examples/val.py --yolo-model yolo_nas_s.pt --reid-model osnetx1_0_dukemtcereid.pt --tracking-method deepocsort --benchmark MOT16
--yolo-model yolox_n.pt --reid-model osnet_ain_x1_0_msmt17.pt --tracking-method ocsort --benchmark MOT17
--yolo-model yolov8s.pt --reid-model lmbn_n_market.pt --tracking-method strongsort --benchmark <your-custom-dataset>
Evolution
We use a fast and elitist multiobjective genetic algorithm for tracker hyperparameter tuning. By default the objectives are: HOTA, MOTA, IDF1. Run it by
$ python examples/evolve.py --tracking-method strongsort --benchmark MOT17 --n-trials 100 # tune strongsort for MOT17
--tracking-method ocsort --benchmark <your-custom-dataset> --objective HOTA # tune ocsort for maximizing HOTA on your custom tracking dataset
The set of hyperparameters leading to the best HOTA result are written to the tracker's config file.
Minimalistic
import cv2
import numpy as np
from pathlib import Path
from boxmot import DeepOCSORT
tracker = DeepOCSORT(
model_weights=Path('osnet_x0_25_msmt17.pt'), # which ReID model to use
device='cuda:0',
fp16=False,
)
vid = cv2.VideoCapture(0)
while True:
ret, im = vid.read()
# substitute by your object detector, output has to be N X (x, y, x, y, conf, cls)
dets = np.array([[144, 212, 578, 480, 0.82, 0],
[425, 281, 576, 472, 0.56, 65]])
tracks = tracker.update(dets, im) # --> (x, y, x, y, id, conf, cls, ind)
Complete
import cv2
import numpy as np
from pathlib import Path
from boxmot import DeepOCSORT
tracker = DeepOCSORT(
model_weights=Path('osnet_x0_25_msmt17.pt'), # which ReID model to use
device='cuda:0',
fp16=True,
)
vid = cv2.VideoCapture(0)
color = (0, 0, 255) # BGR
thickness = 2
fontscale = 0.5
while True:
ret, im = vid.read()
# substitute by your object detector, input to tracker has to be N X (x, y, x, y, conf, cls)
dets = np.array([[144, 212, 578, 480, 0.82, 0],
[425, 281, 576, 472, 0.56, 65]])
tracks = tracker.update(dets, im) # --> (x, y, x, y, id, conf, cls, ind)
xyxys = tracks[:, 0:4].astype('int') # float64 to int
ids = tracks[:, 4].astype('int') # float64 to int
confs = tracks[:, 5]
clss = tracks[:, 6].astype('int') # float64 to int
inds = tracks[:, 7].astype('int') # float64 to int
# in case you have segmentations or poses alongside with your detections you can use
# the ind variable in order to identify which track is associated to each seg or pose by:
# segs = segs[inds]
# poses = poses[inds]
# you can then zip them together: zip(tracks, poses)
# print bboxes with their associated id, cls and conf
if tracks.shape[0] != 0:
for xyxy, id, conf, cls in zip(xyxys, ids, confs, clss):
im = cv2.rectangle(
im,
(xyxy[0], xyxy[1]),
(xyxy[2], xyxy[3]),
color,
thickness
)
cv2.putText(
im,
f'id: {id}, conf: {conf}, c: {cls}',
(xyxy[0], xyxy[1]-10),
cv2.FONT_HERSHEY_SIMPLEX,
fontscale,
color,
thickness
)
# show image with bboxes, ids, classes and confidences
cv2.imshow('frame', im)
# break on pressing q
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vid.release()
cv2.destroyAllWindows()
Tiled inference
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction
import cv2
import numpy as np
from pathlib import Path
from boxmot import DeepOCSORT
tracker = DeepOCSORT(
model_weights=Path('osnet_x0_25_msmt17.pt'), # which ReID model to use
device='cpu',
fp16=False,
)
detection_model = AutoDetectionModel.from_pretrained(
model_type='yolov8',
model_path='yolov8n.pt',
confidence_threshold=0.5,
device="cpu", # or 'cuda:0'
)
vid = cv2.VideoCapture(0)
color = (0, 0, 255) # BGR
thickness = 2
fontscale = 0.5
while True:
ret, im = vid.read()
# get sliced predictions
result = get_sliced_prediction(
im,
detection_model,
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2
)
num_predictions = len(result.object_prediction_list)
dets = np.zeros([num_predictions, 6], dtype=np.float32)
for ind, object_prediction in enumerate(result.object_prediction_list):
dets[ind, :4] = np.array(object_prediction.bbox.to_xyxy(), dtype=np.float32)
dets[ind, 4] = object_prediction.score.value
dets[ind, 5] = object_prediction.category.id
tracks = tracker.update(dets, im) # --> (x, y, x, y, id, conf, cls, ind)
if tracks.shape[0] != 0:
xyxys = tracks[:, 0:4].astype('int') # float64 to int
ids = tracks[:, 4].astype('int') # float64 to int
confs = tracks[:, 5].round(decimals=2)
clss = tracks[:, 6].astype('int') # float64 to int
inds = tracks[:, 7].astype('int') # float64 to int
# print bboxes with their associated id, cls and conf
for xyxy, id, conf, cls in zip(xyxys, ids, confs, clss):
im = cv2.rectangle(
im,
(xyxy[0], xyxy[1]),
(xyxy[2], xyxy[3]),
color,
thickness
)
cv2.putText(
im,
f'id: {id}, conf: {conf}, c: {cls}',
(xyxy[0], xyxy[1]-10),
cv2.FONT_HERSHEY_SIMPLEX,
fontscale,
color,
thickness
)
# show image with bboxes, ids, classes and confidences
cv2.imshow('frame', im)
# break on pressing q
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vid.release()
cv2.destroyAllWindows()
For Yolo tracking bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please send an email to: yolov5.deepsort.pytorch@gmail.com