Skip to content

AdeDZY/LeToRankResource

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LeToRankResource

Learning to rank resources for selective search

dependence

  • SVM Rank
  • Python sklean library

How to Run:

  1. Download /bos/tmp11/zhuyund/LeToRankResource/data.zip. Put under the same dir with source code and unzip.
  2. Modify SVMRank path in the source code. Modify training basedir (./data/aol-train/ or ./data/mqt-train/) in pairwise-train-AOL-cleaned.py.
  3. python ./pairwise-train-AOL-cleaned.py
  4. python ./pairwise-test-clean.py
  5. pairwise-test-clean.py will print out number of relevant documents retrieved by each method (when selecting 4 shards).
  6. Shard list will be written into ./data/cwb-test/aol_l2r_all_{1-10}.shardlist.

Evaluation (MAP, NDCG, ect)

Setup

  1. Be careful the following files don't override your own ones.
  2. cp /bos/usr0/zhuyund/fedsearch/run_l2r_cent1.sh ~/fedsearch/.
  3. cp /bos/usr0/zhuyund/fedsearch/l2r_make_runs.sh ~/fedsearch/.
  4. Copy qrels: cp /bos/usr0/zhuyund/fedsearch/data/cwb*.qrels ~/fedsearch/data/.

To test a shard list

  1. mkdir ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}. For example, runname='aoltrain_lim6' means LeToR trained with AOL queries, and search the top 6 shards.
  2. Copy the shard list you want to test into ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}. cp ./data/cwb-test/aol_l2r_all_6.shardlist ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/aoltrain_lim6/all.shardlist
  3. ~/fedsearch/run_l2r_cent1.sh {runname}
  4. TrecEval results will be written into ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}/cwb*.eval(and cwb*.Qeval)

TODO:

  • upload AOL and MQT training data.

About

Learning to rank resources for selective search

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages