Skip to content

AlexZou14/CVHSSR

Repository files navigation

Cross-View Hierarchy Network for Stereo Image Super-Resolution (offical)

The official pytorch implementation of the paper Cross-View Hierarchy Network for Stereo Image Super-Resolution

Wenbin Zou, Hongxia Gao* , Liang Chen, Yunchen Zhang, Mingchao Jiang, Zhongxin Yu, Ming Tan

Introduction

We have implemented our CVHSSR method through the NAFNet algorithm framework. Next, we will describe the main processes of training and testing.

  • Paper The CVHSSR has been accepted by CVPRW2023, you can read the paper here.
  • Model

Network

How to use the code to train CVHSSR network.

  1. Installation environment
python 3.9.5
pytorch 1.11.0
cuda 11.3
git clone https://github.com/AlexZou14/CVHSSR.git
cd CVHSSR
pip install -r requirements.txt
python setup.py develop --no_cuda_ext
  1. Data Preparation Follow previous works, our models are trained with Flickr1024 and Middlebury datasets, which is exactly the same as iPASSR. Please visit their homepage and follow their instructions to download and prepare the datasets.

Download and prepare the train set and place it in ./datasets/StereoSR

Download and prepare the evaluation data and place it in ./datasets/StereoSR/test

The structure of datasets directory should be like

    datasets
    ├── StereoSR
    │   ├── patches_x2
    │   │   ├── 000001
    │   │   ├── 000002
    │   │   ├── ...
    │   │   ├── 298142
    │   │   └── 298143
    │   ├── patches_x4
    │   │   ├── 000001
    │   │   ├── 000002
    │   │   ├── ...
    │   │   ├── 049019
    │   │   └── 049020
    |   ├── test
    │   |   ├── Flickr1024
    │   │   │   ├── hr
    │   │   │   ├── lr_x2
    │   │   │   └── lr_x4
    │   |   ├── KITTI2012
    │   │   │   ├── hr
    │   │   │   ├── lr_x2
    │   │   │   └── lr_x4
    │   |   ├── KITTI2015
    │   │   │   ├── hr
    │   │   │   ├── lr_x2
    │   │   │   └── lr_x4
    │   │   └── Middlebury
    │   │       ├── hr
    │   │       ├── lr_x2
    │   │       └── lr_x4
  1. Modify the configuration file options/train/CVHSSR_Sx4.yml and options/test/CVHSSR_Sx4.yml as follows:
# train
dataroot_gt: ./data/Flickr1024/trainx4 # replace your dataset path
dataroot_lq: ./data/Flickr1024/trainx4 # replace your dataset path

# Testing
dataroot_gt: ./data/Flickr1024/Stereo_test/KITTI2012/hr # replace your dataset path
dataroot_lq: ./data/Flickr1024/Stereo_test/KITTI2012/lr_x4 # replace your dataset path
pretrain_network_g: ./CVHSSR_Sx4.pth # replace your model checkpoint path
  1. Modify the bash file train.sh as follows:
# modify the number of gpus, config path.
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 --master_port=4329 basicsr/train.py -opt ./options/train/CVHSSR_Sx4.yml --launcher pytorch
  1. train CVHSSR network, as follows:
cd CVHSSR

bash train.sh

How to use the code to test CVHSSR network.

# modify the config path, checkpoint path.
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 --master_port=4329 basicsr/test.py -opt ./options/test/CVHSSR-S_2x.yml --launcher pytorch

If you find this repo useful for your research, please consider citing the papers.

@inproceedings{zou2023cross,
  title={Cross-View Hierarchy Network for Stereo Image Super-Resolution},
  author={Zou, Wenbin and Gao, Hongxia and Chen, Liang and Zhang, Yunchen and Jiang, Mingchao and Yu, Zhongxin and Tan, Ming},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={1396--1405},
  year={2023}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages