Skip to content

PyTorch implementation of SimCLR: supports multi-GPU training and closely reproduces results

License

Notifications You must be signed in to change notification settings

AndrewAtanov/simclr-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimCLR PyTorch

This is an unofficial repository reproducing results of the paper A Simple Framework for Contrastive Learning of Visual Representations. The implementation supports multi-GPU distributed training on several nodes with PyTorch DistributedDataParallel.

How close are we to the original SimCLR?

The implementation closely reproduces the original ResNet50 results on ImageNet and CIFAR-10.

Dataset Batch Size # Epochs Training GPUs Training time Top-1 accuracy of Linear evaluation (100% labels) Reference
CIFAR-10 1024 1000 2v100 13h 93.44 93.95
ImageNet 512 100 4v100 85h 60.14 60.62
ImageNet 2048 200 16v100 55h 65.58 65.83
ImageNet 2048 600 16v100 170h 67.84 68.71

Pre-trained weights

Try out a pre-trained models Open In Colab

You can download pre-trained weights from here.

To eval the preatrained CIFAR-10 linear model and encoder use the following command:

python train.py --problem eval --eval_only true --iters 1 --arch linear \
--ckpt pretrained_models/resnet50_cifar10_bs1024_epochs1000_linear.pth.tar \
--encoder_ckpt pretrained_models/resnet50_cifar10_bs1024_epochs1000.pth.tar

To eval the preatrained ImageNet linear model and encoder use the following command:

export IMAGENET_PATH=.../raw-data
python train.py --problem eval --eval_only true --iters 1 --arch linear --data imagenet \
--ckpt pretrained_models/resnet50_imagenet_bs2k_epochs600_linear.pth.tar \
--encoder_ckpt pretrained_models/resnet50_imagenet_bs2k_epochs600.pth.tar

Enviroment Setup

Create a python enviroment with the provided config file and miniconda:

conda env create -f environment.yml
conda activate simclr_pytorch

export IMAGENET_PATH=... # If you have enough RAM using /dev/shm usually accelerates data loading time
export EXMAN_PATH=... # A path to logs

Training

Model training consists of two steps: (1) self-supervised encoder pretraining and (2) classifier learning with the encoder representations. Both steps are done with the train.py script. To see the help for sim-clr/eval problem call the following command: python source/train.py --help --problem sim-clr/eval.

Self-supervised pretraining

CIFAR-10

The config cifar_train_epochs1000_bs1024.yaml contains the parameters to reproduce results for CIFAR-10 dataset. It requires 2 V100 GPUs. The pretraining command is:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml

ImageNet

The configs imagenet_params_epochs*_bs*.yaml contain the parameters to reproduce results for ImageNet dataset. It requires at 4v100-16v100 GPUs depending on a batch size. The single-node (4 v100 GPUs) pretraining command is:

python train.py --config configs/imagenet_train_epochs100_bs512.yaml

Logs

The logs and the model will be stored at ./logs/exman-train.py/runs/<experiment-id>/. You can access all the experiments from python with exman.Index('./logs/exman-train.py').info().

See how to work with logs Open In Colab

Linear Evaluation

To train a linear classifier on top of the pretrained encoder, run the following command:

python train.py --config configs/cifar_eval.yaml --encoder_ckpt <path-to-encoder>

The above model with batch size 1024 gives 93.5 linear eval test accuracy.

Pretraining with DistributedDataParallel

To train a model with larger batch size on several nodes you need to set --dist ddp flag and specify the following parameters:

  • --dist_address: the address and a port of the main node in the <address>:<port> format
  • --node_rank: 0 for the main node and 1,... for the others.
  • --world_size: the number of nodes.

For example, to train with two nodes you need to run the following command on the main node:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml --dist ddp --dist_address <address>:<port> --node_rank 0 --world_size 2

and on the second node:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml --dist ddp --dist_address <address>:<port> --node_rank 1 --world_size 2

The ImageNet the pretaining on 4 nodes all with 4 GPUs looks as follows:

node1: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 0
node2: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 1
node3: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 2
node4: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 3

Attribution

Parts of this code are based on the following repositories:v

Acknowledgements

  • This work was supported in part through computational resources of HPC facilities at NRU HSE

About

PyTorch implementation of SimCLR: supports multi-GPU training and closely reproduces results

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Contributors 4

  •  
  •  
  •  
  •