forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add hard_sigmoid trt converter test cases (PaddlePaddle#35876)
- Loading branch information
1 parent
8b28c37
commit 328e511
Showing
2 changed files
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
126 changes: 126 additions & 0 deletions
126
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_hard_sigmoid.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
|
||
|
||
class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input(shape): | ||
return np.random.random(shape).astype(np.float32) | ||
|
||
for batch in [1, 2, 4]: | ||
for shape in [[batch, 64], [batch, 32, 64], [batch, 64, 32, 128]]: | ||
self.input_dim = len(shape) | ||
for slope in [0.1, 0.5]: | ||
for offset in [0.2, 0.7]: | ||
dics = [{"slope": slope, "offset": offset}] | ||
ops_config = [{ | ||
"op_type": "hard_sigmoid", | ||
"op_inputs": { | ||
"X": ["input_data"], | ||
}, | ||
"op_outputs": { | ||
"Out": ["output_data"] | ||
}, | ||
"op_attrs": dics[0] | ||
}] | ||
ops = self.generate_op_config(ops_config) | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={}, | ||
inputs={ | ||
"input_data": TensorConfig( | ||
data_gen=partial(generate_input, shape)) | ||
}, | ||
outputs=["output_data"]) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.input_dim == 2: | ||
self.dynamic_shape.min_input_shape = {"input_data": [1, 8]} | ||
self.dynamic_shape.max_input_shape = {"input_data": [64, 128]} | ||
self.dynamic_shape.opt_input_shape = {"input_data": [2, 16]} | ||
elif self.input_dim == 3: | ||
self.dynamic_shape.min_input_shape = {"input_data": [1, 8, 8]} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_data": [64, 128, 256] | ||
} | ||
self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 64]} | ||
elif self.input_dim == 4: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_data": [1, 8, 8, 4] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_data": [64, 128, 256, 512] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_data": [2, 16, 64, 128] | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs | ||
for i in range(len(program_config.ops)) | ||
] | ||
|
||
# for static_shape | ||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), (1, 2), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), (1, 2), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), (1, 2), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), (1, 2), 1e-5 | ||
|
||
def add_skip_trt_case(self): | ||
def teller(program_config, predictor_config): | ||
if len(self.dynamic_shape. | ||
min_input_shape) == 0 and self.input_dim == 2: | ||
return True | ||
return False | ||
|
||
self.add_skip_case( | ||
teller, SkipReasons.TRT_NOT_SUPPORT, | ||
"Need to repair the case: the output of trt and GPU has diff when inputs' dims is 2 in static shape mode." | ||
) | ||
|
||
def test(self): | ||
self.add_skip_trt_case() | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |