Skip to content

Arpitrf/fitvid

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Commands:

To train the video model:

  1. separate_grasped_model_seg: for segmentation images
  2. separate_grasped_model: for rgb images
python fitvid/scripts/train_fitvid.py --output_dir /home/arpit/test_projects/fitvid/run_test_seg --dataset_file /home/arpit/test_projects/OmniGibson/dynamics_model_dataset_seg/dataset.hdf5 --wandb_online

To train the grasped model:

  1. separate_grasped_model_seg: to use segmentation images
  2. separate_grasped_model: to use rgb images
python fitvid/scripts/train_grasped_model.py --output_dir run_seg_grasped --dataset_file /home/arpit/test_projects/OmniGibson/dynamics_model_dataset_seg/dataset.hdf5 --pretrained_video_model /home/arpit/test_projects/fitvid/run_test_seg/model_epoch50_seg --wandb_online 

FitVid Video Prediction Model

Implementation of FitVid video prediction model in JAX/Flax.

If you find this code useful, please cite it in your paper:

@article{babaeizadeh2021fitvid,
  title={FitVid: Overfitting in Pixel-Level Video Prediction},
  author= {Babaeizadeh, Mohammad and Saffar, Mohammad Taghi and Nair, Suraj 
  and Levine, Sergey and Finn, Chelsea and Erhan, Dumitru},
  journal={arXiv preprint arXiv:2106.13195},
  year={2020}
}

Method

FitVid is a new architecture for conditional variational video prediction. It has ~300 million parameters and can be trained with minimal training tricks.

Architecture

Sample Videos

Human3.6M RoboNet
Humans1 RoboNet1
Humans2 RoboNet2

For more samples please visit FitVid. website: https://sites.google.com/view/fitvidpaper

Instructions

Get dependencies:

pip3 install --user tensorflow
pip3 install --user tensorflow_addons
pip3 install --user flax
pip3 install --user ffmpeg

Train on RoboNet:

python -m fitvid.train  --output_dir /tmp/output

Disclaimer: Not an official Google product.

About

Clone of fitvid

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%