- TF : Tensorflow
- PT : PyTorch
- SK : Scikit-Learn
Title | Description | Framework | Link |
---|---|---|---|
BindsNET | spiking neural networks | PT | [Link] |
NengoDL | spiking neural networks | TF | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
learn2learn | software library for meta-learning research | PT | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
Spektral | graph neural networks | TF | [Link] |
PyTorch geometric | graph neural networks | PT | [Link] |
Deep Graph Library (DGL) | graph neural networks | - | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
tensorflow-recommenders | recommender system models | TF | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
neural-structured-learning | leveraging structured signals | TF | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
early-stopping-pytorch | Pytorch early-stopping | PT | [Link] |
pytorch-metric-learning | Many loss and utils | PT | [Link] |
pytorch-lighting | The lightweight PyTorch wrapper | PT | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
pytorch-optimizer | Many optimizer | PT | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
Bayesian Optimization | Bayesain optimization library | - | [Link] |
NiaPy | Nature Inspired Algorithms | - | [Link] |
DEAP | Genetic Algorithms library | - | [Link] |
Optuna | Random Search, Bayesian Optimization | - | [Link] |
Hpbandster | HyperBand and BOHB optimization library | - | [Link] |
NNI | Include many optimization library | - | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
FeatureSelectionGA | FeatureSelection using Genetic Algorithms | - | [Link] |
Title | Description | Framework | Link |
---|---|---|---|
NiaAML | FeatureSelection using AutoML | - | [Link] |
PyCaret | low-code machine learning library | SK | [Link] |
AutoKeras | An AutoML system based on Keras | TF | [Link] |