-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #116 from aravindhm/tanh
Add TanH = hyperbolic tangent activation layer (popular for sparse autoencoders).
- Loading branch information
Showing
4 changed files
with
218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
// Copyright 2014 Aravindh Mahendran | ||
// TanH neuron activation function layer. Adapted from ReLU layer code written by Yangqing Jia | ||
|
||
#include "caffe/layer.hpp" | ||
#include "caffe/vision_layers.hpp" | ||
#include <algorithm> | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void TanHLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, | ||
vector<Blob<Dtype>*>* top) { | ||
const Dtype* bottom_data = bottom[0]->cpu_data(); | ||
Dtype* top_data = (*top)[0]->mutable_cpu_data(); | ||
Dtype exp2x; | ||
const int count = bottom[0]->count(); | ||
for (int i = 0; i < count; ++i) { | ||
exp2x = exp(2*bottom_data[i]); | ||
top_data[i] = (exp2x - Dtype(1))/(exp2x + Dtype(1)); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
Dtype TanHLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, | ||
const bool propagate_down, | ||
vector<Blob<Dtype>*>* bottom) { | ||
if (propagate_down) { | ||
const Dtype* bottom_data = (*bottom)[0]->cpu_data(); | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff(); | ||
const int count = (*bottom)[0]->count(); | ||
Dtype exp2x; | ||
Dtype tanhx; | ||
for (int i = 0; i < count; ++i) { | ||
exp2x = exp(2*bottom_data[i]); | ||
tanhx = (exp2x - Dtype(1))/(exp2x + Dtype(1)); | ||
bottom_diff[i] = top_diff[i] * (1 - tanhx*tanhx); | ||
} | ||
} | ||
return Dtype(0); | ||
} | ||
|
||
template <typename Dtype> | ||
__global__ void TanHForward(const int n, const Dtype* in, Dtype* out) { | ||
int index = threadIdx.x + blockIdx.x * blockDim.x; | ||
if (index < n) { | ||
Dtype exp2x = exp(2*in[index]); | ||
out[index] = (exp2x - Dtype(1))/(exp2x + Dtype(1)); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void TanHLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, | ||
vector<Blob<Dtype>*>* top) { | ||
const Dtype* bottom_data = bottom[0]->gpu_data(); | ||
Dtype* top_data = (*top)[0]->mutable_gpu_data(); | ||
const int count = bottom[0]->count(); | ||
TanHForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( | ||
count, bottom_data, top_data); | ||
CUDA_POST_KERNEL_CHECK; | ||
// << " count: " << count << " bottom_data: " | ||
// << (unsigned long)bottom_data << " top_data: " << (unsigned long)top_data | ||
// << " blocks: " << CAFFE_GET_BLOCKS(count) | ||
// << " threads: " << CAFFE_CUDA_NUM_THREADS; | ||
} | ||
|
||
template <typename Dtype> | ||
__global__ void TanHBackward(const int n, const Dtype* in_diff, | ||
const Dtype* in_data, Dtype* out_diff) { | ||
int index = threadIdx.x + blockIdx.x * blockDim.x; | ||
if (index < n) { | ||
Dtype exp2x = exp(2*in_data[index]); | ||
Dtype tanhx = (exp2x - Dtype(1))/(exp2x + Dtype(1)); | ||
out_diff[index] = in_diff[index] * (1 - tanhx*tanhx); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
Dtype TanHLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, | ||
const bool propagate_down, | ||
vector<Blob<Dtype>*>* bottom) { | ||
if (propagate_down) { | ||
const Dtype* bottom_data = (*bottom)[0]->gpu_data(); | ||
const Dtype* top_diff = top[0]->gpu_diff(); | ||
Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff(); | ||
const int count = (*bottom)[0]->count(); | ||
TanHBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( | ||
count, top_diff, bottom_data, bottom_diff); | ||
CUDA_POST_KERNEL_CHECK; | ||
} | ||
return Dtype(0); | ||
} | ||
|
||
INSTANTIATE_CLASS(TanHLayer); | ||
|
||
|
||
} // namespace caffe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
// Copyright 2014 Aravindh Mahendran | ||
// Adapted from other test files | ||
|
||
#include <cmath> | ||
#include <cstring> | ||
#include <cuda_runtime.h> | ||
|
||
#include "gtest/gtest.h" | ||
#include "caffe/blob.hpp" | ||
#include "caffe/common.hpp" | ||
#include "caffe/filler.hpp" | ||
#include "caffe/vision_layers.hpp" | ||
#include "caffe/test/test_gradient_check_util.hpp" | ||
|
||
#include "caffe/test/test_caffe_main.hpp" | ||
|
||
namespace caffe { | ||
|
||
extern cudaDeviceProp CAFFE_TEST_CUDA_PROP; | ||
|
||
template <typename Dtype> | ||
class TanHLayerTest : public ::testing::Test { | ||
protected: | ||
TanHLayerTest() | ||
: blob_bottom_(new Blob<Dtype>(2, 10, 1, 1)), | ||
blob_top_(new Blob<Dtype>()) { | ||
// fill the values | ||
FillerParameter filler_param; | ||
GaussianFiller<Dtype> filler(filler_param); | ||
filler.Fill(this->blob_bottom_); | ||
blob_bottom_vec_.push_back(blob_bottom_); | ||
blob_top_vec_.push_back(blob_top_); | ||
}; | ||
virtual ~TanHLayerTest() { delete blob_bottom_; delete blob_top_; } | ||
Blob<Dtype>* const blob_bottom_; | ||
Blob<Dtype>* const blob_top_; | ||
vector<Blob<Dtype>*> blob_bottom_vec_; | ||
vector<Blob<Dtype>*> blob_top_vec_; | ||
}; | ||
|
||
typedef ::testing::Types<float, double> Dtypes; | ||
TYPED_TEST_CASE(TanHLayerTest, Dtypes); | ||
|
||
TYPED_TEST(TanHLayerTest, TestForwardCPU) { | ||
LayerParameter layer_param; | ||
Caffe::set_mode(Caffe::CPU); | ||
TanHLayer<TypeParam> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, &(this->blob_top_vec_)); | ||
layer.Forward(this->blob_bottom_vec_, &(this->blob_top_vec_)); | ||
// Test exact values | ||
for (int i = 0; i < this->blob_bottom_->num(); ++i) { | ||
for (int j = 0; j < this->blob_bottom_->channels(); ++j) { | ||
for (int k = 0; k < this->blob_bottom_->height(); ++k) { | ||
for (int l = 0; l < this->blob_bottom_->width(); ++l) { | ||
EXPECT_GE(this->blob_top_->data_at(i,j,k,l) + 1e-4, | ||
(exp(2*this->blob_bottom_->data_at(i,j,k,l))-1)/(exp(2*this->blob_bottom_->data_at(i,j,k,l))+1)); | ||
EXPECT_LE(this->blob_top_->data_at(i,j,k,l) - 1e-4, | ||
(exp(2*this->blob_bottom_->data_at(i,j,k,l))-1)/(exp(2*this->blob_bottom_->data_at(i,j,k,l))+1)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TanHLayerTest, TestGradientCPU) { | ||
LayerParameter layer_param; | ||
Caffe::set_mode(Caffe::CPU); | ||
TanHLayer<TypeParam> layer(layer_param); | ||
GradientChecker<TypeParam> checker(1e-2, 1e-3); | ||
checker.CheckGradientExhaustive(layer, this->blob_bottom_vec_, this->blob_top_vec_); | ||
} | ||
|
||
TYPED_TEST(TanHLayerTest, TestForwardGPU) { | ||
LayerParameter layer_param; | ||
Caffe::set_mode(Caffe::GPU); | ||
TanHLayer<TypeParam> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, &(this->blob_top_vec_)); | ||
layer.Forward(this->blob_bottom_vec_, &(this->blob_top_vec_)); | ||
// Test exact values | ||
for (int i = 0; i < this->blob_bottom_->num(); ++i) { | ||
for (int j = 0; j < this->blob_bottom_->channels(); ++j) { | ||
for (int k = 0; k < this->blob_bottom_->height(); ++k) { | ||
for (int l = 0; l < this->blob_bottom_->width(); ++l) { | ||
EXPECT_GE(this->blob_top_->data_at(i,j,k,l) + 1e-4, | ||
(exp(2*this->blob_bottom_->data_at(i,j,k,l))-1)/(exp(2*this->blob_bottom_->data_at(i,j,k,l))+1)); | ||
EXPECT_LE(this->blob_top_->data_at(i,j,k,l) - 1e-4, | ||
(exp(2*this->blob_bottom_->data_at(i,j,k,l))-1)/(exp(2*this->blob_bottom_->data_at(i,j,k,l))+1)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TanHLayerTest, TestGradientGPU) { | ||
LayerParameter layer_param; | ||
Caffe::set_mode(Caffe::GPU); | ||
TanHLayer<TypeParam> layer(layer_param); | ||
GradientChecker<TypeParam> checker(1e-2, 1e-3); | ||
checker.CheckGradientExhaustive(layer, this->blob_bottom_vec_, this->blob_top_vec_); | ||
} | ||
|
||
} |