Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HDF5DataLayer: read matrix of features and labels from HDF5 file as input #147

Merged
merged 3 commits into from
Feb 25, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -69,8 +69,13 @@ MKL_LIB_DIR := $(MKL_DIR)/lib $(MKL_DIR)/lib/intel64

INCLUDE_DIRS += ./src ./include $(CUDA_INCLUDE_DIR) $(MKL_INCLUDE_DIR)
LIBRARY_DIRS += $(CUDA_LIB_DIR) $(MKL_LIB_DIR)
LIBRARIES := cudart cublas curand mkl_rt pthread \
glog protobuf leveldb snappy boost_system \
LIBRARIES := cudart cublas curand \
mkl_rt \
pthread \
glog protobuf leveldb \
snappy \
boost_system \
hdf5 hdf5_hl \
opencv_core opencv_highgui opencv_imgproc
PYTHON_LIBRARIES := boost_python python2.7
WARNINGS := -Wall
Expand Down
9 changes: 9 additions & 0 deletions include/caffe/util/io.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,10 @@

#include <google/protobuf/message.h>

#include <boost/scoped_ptr.hpp>
#include "hdf5.h"
#include "hdf5_hl.h"

#include <string>

#include "caffe/blob.hpp"
Expand Down Expand Up @@ -48,6 +52,11 @@ inline bool ReadImageToDatum(const string& filename, const int label,
return ReadImageToDatum(filename, label, 0, 0, datum);
}

template <typename Dtype>
void load_2d_dataset(
hid_t file_id, const char* dataset_name_,
boost::scoped_ptr<Dtype>* array, hsize_t* dims);

} // namespace caffe

#endif // CAFFE_UTIL_IO_H_
30 changes: 30 additions & 0 deletions include/caffe/vision_layers.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@

#include <leveldb/db.h>
#include <pthread.h>
#include <boost/scoped_ptr.hpp>

#include "hdf5.h"

#include <vector>

Expand Down Expand Up @@ -351,6 +354,33 @@ class DataLayer : public Layer<Dtype> {
};


template <typename Dtype>
class HDF5DataLayer : public Layer<Dtype> {
public:
explicit HDF5DataLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual ~HDF5DataLayer();
virtual void SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);

protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual Dtype Backward_cpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down, vector<Blob<Dtype>*>* bottom);
virtual Dtype Backward_gpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down, vector<Blob<Dtype>*>* bottom);

boost::scoped_ptr<Dtype> data;
boost::scoped_ptr<Dtype> label;
hsize_t data_dims[2];
hsize_t label_dims[2];
hsize_t current_row;
};


template <typename Dtype>
class SoftmaxLayer : public Layer<Dtype> {
public:
Expand Down
2 changes: 2 additions & 0 deletions src/caffe/layer_factory.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ Layer<Dtype>* GetLayer(const LayerParameter& param) {
return new ConvolutionLayer<Dtype>(param);
} else if (type == "data") {
return new DataLayer<Dtype>(param);
} else if (type == "hdf5_data") {
return new HDF5DataLayer<Dtype>(param);
} else if (type == "dropout") {
return new DropoutLayer<Dtype>(param);
} else if (type == "euclidean_loss") {
Expand Down
106 changes: 106 additions & 0 deletions src/caffe/layers/hdf5_data_layer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
/*
TODO:
- only load parts of the file, in accordance with a prototxt param "max_mem"
*/

#include <iostream>
#include <stdint.h>
#include <string>
#include <vector>

#include "hdf5.h"
#include "hdf5_hl.h"

#include "caffe/layer.hpp"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp"

using std::string;

namespace caffe {

template <typename Dtype>
HDF5DataLayer<Dtype>::~HDF5DataLayer<Dtype>() { }

template <typename Dtype>
void HDF5DataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
CHECK_EQ(bottom.size(), 0) << "HDF5DataLayer takes no input blobs.";
CHECK_EQ(top->size(), 2) << "HDF5DataLayer takes two blobs as output.";

// Load the HDF5 file and initialize the counter.
const char* hdf_filename = this->layer_param_.source().c_str();
LOG(INFO) << "Loading HDF5 file" << hdf_filename;
hid_t file_id = H5Fopen(hdf_filename, H5F_ACC_RDONLY, H5P_DEFAULT);
load_2d_dataset(file_id, "data", &data, data_dims);
load_2d_dataset(file_id, "label", &label, label_dims);
herr_t status = H5Fclose(file_id);
assert(data_dims[0] == label_dims[0]);
current_row = 0;

// Reshape blobs.
(*top)[0]->Reshape(this->layer_param_.batchsize(), data_dims[1], 1, 1);
(*top)[1]->Reshape(this->layer_param_.batchsize(), label_dims[1], 1, 1);
LOG(INFO) << "output data size: " << (*top)[0]->num() << ","
<< (*top)[0]->channels() << "," << (*top)[0]->height() << ","
<< (*top)[0]->width();
}

template <typename Dtype>
void HDF5DataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
const int batchsize = this->layer_param_.batchsize();
for (int i = 0; i < batchsize; ++i, ++current_row) {
if (current_row == data_dims[0]) {
current_row = 0;
}

memcpy( &(*top)[0]->mutable_cpu_data()[i * data_dims[1]],
&(data.get()[current_row * data_dims[1]]),
sizeof(Dtype) * data_dims[1]);

memcpy( &(*top)[1]->mutable_cpu_data()[i * label_dims[1]],
&(label.get()[current_row * label_dims[1]]),
sizeof(Dtype) * label_dims[1]);
}
}

template <typename Dtype>
void HDF5DataLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
const int batchsize = this->layer_param_.batchsize();
for (int i = 0; i < batchsize; ++i, ++current_row) {
if (current_row == data_dims[0]) {
current_row = 0;
}

CUDA_CHECK(cudaMemcpy(
&(*top)[0]->mutable_gpu_data()[i * data_dims[1]],
&(data.get()[current_row * data_dims[1]]),
sizeof(Dtype) * data_dims[1],
cudaMemcpyHostToDevice));

CUDA_CHECK(cudaMemcpy(
&(*top)[1]->mutable_gpu_data()[i * label_dims[1]],
&(label.get()[current_row * label_dims[1]]),
sizeof(Dtype) * label_dims[1],
cudaMemcpyHostToDevice));
}
}

// The backward operations are dummy - they do not carry any computation.
template <typename Dtype>
Dtype HDF5DataLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down, vector<Blob<Dtype>*>* bottom) {
return Dtype(0.);
}

template <typename Dtype>
Dtype HDF5DataLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down, vector<Blob<Dtype>*>* bottom) {
return Dtype(0.);
}

INSTANTIATE_CLASS(HDF5DataLayer);

} // namespace caffe
17 changes: 17 additions & 0 deletions src/caffe/test/test_data/generate_sample_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
"""
Generate data used in the HDF5DataLayer test.
"""

import numpy as np
import h5py

num_cols = 8
num_rows = 10
data = np.arange(num_cols * num_rows).reshape(num_rows, num_cols)
label = np.arange(num_rows)[:, np.newaxis]
print data
print label

with h5py.File('./sample_data.h5', 'w') as f:
f['data'] = data.astype('float32')
f['label'] = label.astype('float32')
Binary file added src/caffe/test/test_data/sample_data.h5
Binary file not shown.
16 changes: 16 additions & 0 deletions src/caffe/test/test_data_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ TYPED_TEST(DataLayerTest, TestRead) {
EXPECT_EQ(this->blob_top_label_->channels(), 1);
EXPECT_EQ(this->blob_top_label_->height(), 1);
EXPECT_EQ(this->blob_top_label_->width(), 1);

// Go through the data 100 times
for (int iter = 0; iter < 100; ++iter) {
layer.Forward(this->blob_bottom_vec_, &this->blob_top_vec_);
Expand All @@ -94,6 +95,21 @@ TYPED_TEST(DataLayerTest, TestRead) {
}
}
}

// Same test, in GPU mode.
Caffe::set_mode(Caffe::GPU);
for (int iter = 0; iter < 100; ++iter) {
layer.Forward(this->blob_bottom_vec_, &this->blob_top_vec_);
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(i, this->blob_top_label_->cpu_data()[i]);
}
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 24; ++j) {
EXPECT_EQ(i, this->blob_top_data_->cpu_data()[i * 24 + j])
<< "debug: i " << i << " j " << j;
}
}
}
}

}
130 changes: 130 additions & 0 deletions src/caffe/test/test_hdf5data_layer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
// Copyright 2013 Yangqing Jia

#include <cuda_runtime.h>
#include <leveldb/db.h>

#include <string>

#include "gtest/gtest.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/vision_layers.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/test/test_caffe_main.hpp"

using std::string;

namespace caffe {

extern cudaDeviceProp CAFFE_TEST_CUDA_PROP;

template <typename Dtype>
class HDF5DataLayerTest : public ::testing::Test {
protected:
HDF5DataLayerTest()
: blob_top_data_(new Blob<Dtype>()),
blob_top_label_(new Blob<Dtype>()),
filename(NULL) {};
virtual void SetUp() {
blob_top_vec_.push_back(blob_top_data_);
blob_top_vec_.push_back(blob_top_label_);

// TODO: generate sample HDF5 file on the fly.
// For now, use example HDF5 file.
// TODO: how to best deal with the relativeness of the path?
filename = "src/caffe/test/test_data/sample_data.h5";
LOG(INFO) << "Using sample HDF5 data file " << filename;
};

virtual ~HDF5DataLayerTest() {
delete blob_top_data_;
delete blob_top_label_;
}

char* filename;
Blob<Dtype>* const blob_top_data_;
Blob<Dtype>* const blob_top_label_;
vector<Blob<Dtype>*> blob_bottom_vec_;
vector<Blob<Dtype>*> blob_top_vec_;
};

typedef ::testing::Types<float, double> Dtypes;
TYPED_TEST_CASE(HDF5DataLayerTest, Dtypes);

TYPED_TEST(HDF5DataLayerTest, TestRead) {
// Create LayerParameter with the known parameters.
// The data file we are reading has 10 rows and 8 columns,
// with values from 0 to 10*8 reshaped in row-major order.
LayerParameter param;
int batchsize = 5;
param.set_batchsize(batchsize);
param.set_source(this->filename);
int num_rows = 10;
int num_cols = 8;
HDF5DataLayer<TypeParam> layer(param);

// Test that the layer setup got the correct parameters.
layer.SetUp(this->blob_bottom_vec_, &this->blob_top_vec_);
EXPECT_EQ(this->blob_top_data_->num(), batchsize);
EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
EXPECT_EQ(this->blob_top_data_->height(), 1);
EXPECT_EQ(this->blob_top_data_->width(), 1);

EXPECT_EQ(this->blob_top_label_->num(), batchsize);
EXPECT_EQ(this->blob_top_label_->channels(), 1);
EXPECT_EQ(this->blob_top_label_->height(), 1);
EXPECT_EQ(this->blob_top_label_->width(), 1);

// Go through the data 100 times.
for (int iter = 0; iter < 100; ++iter) {
layer.Forward(this->blob_bottom_vec_, &this->blob_top_vec_);

// On even iterations, we're reading the first half of the data.
// On odd iterations, we're reading the second half of the data.
int label_offset = (iter % 2 == 0) ? 0 : batchsize;
int data_offset = (iter % 2 == 0) ? 0 : batchsize * num_cols;

for (int i = 0; i < batchsize; ++i) {
EXPECT_EQ(
label_offset + i,
this->blob_top_label_->cpu_data()[i]);
}
for (int i = 0; i < batchsize; ++i) {
for (int j = 0; j < num_cols; ++j) {
EXPECT_EQ(
data_offset + i * num_cols + j,
this->blob_top_data_->cpu_data()[i * num_cols + j])
<< "debug: i " << i << " j " << j;
}
}
}

// Exact same test in GPU mode.
Caffe::set_mode(Caffe::GPU);
// Go through the data 100 times.
for (int iter = 0; iter < 100; ++iter) {
layer.Forward(this->blob_bottom_vec_, &this->blob_top_vec_);

// On even iterations, we're reading the first half of the data.
// On odd iterations, we're reading the second half of the data.
int label_offset = (iter % 2 == 0) ? 0 : batchsize;
int data_offset = (iter % 2 == 0) ? 0 : batchsize * num_cols;

for (int i = 0; i < batchsize; ++i) {
EXPECT_EQ(
label_offset + i,
this->blob_top_label_->cpu_data()[i]);
}
for (int i = 0; i < batchsize; ++i) {
for (int j = 0; j < num_cols; ++j) {
EXPECT_EQ(
data_offset + i * num_cols + j,
this->blob_top_data_->cpu_data()[i * num_cols + j])
<< "debug: i " << i << " j " << j;
}
}
}
}

} // namespace caffe
Loading