-
Notifications
You must be signed in to change notification settings - Fork 18.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TileLayer #2083
Merged
Merged
TileLayer #2083
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
#include <vector> | ||
|
||
#include "caffe/common_layers.hpp" | ||
#include "caffe/layer.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void TileLayer<Dtype>::Reshape( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const TileParameter& tile_param = this->layer_param_.tile_param(); | ||
axis_ = bottom[0]->CanonicalAxisIndex(tile_param.axis()); | ||
CHECK(tile_param.has_tiles()) << "Number of tiles must be specified"; | ||
tiles_ = tile_param.tiles(); | ||
CHECK_GT(tiles_, 0) << "Number of tiles must be positive."; | ||
vector<int> top_shape = bottom[0]->shape(); | ||
top_shape[axis_] = bottom[0]->shape(axis_) * tiles_; | ||
top[0]->Reshape(top_shape); | ||
outer_dim_ = bottom[0]->count(0, axis_); | ||
inner_dim_ = bottom[0]->count(axis_); | ||
} | ||
|
||
template <typename Dtype> | ||
void TileLayer<Dtype>::Forward_cpu( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const Dtype* bottom_data = bottom[0]->cpu_data(); | ||
Dtype* top_data = top[0]->mutable_cpu_data(); | ||
for (int i = 0; i < outer_dim_; ++i) { | ||
for (int t = 0; t < tiles_; ++t) { | ||
caffe_copy(inner_dim_, bottom_data, top_data); | ||
top_data += inner_dim_; | ||
} | ||
bottom_data += inner_dim_; | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void TileLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { | ||
if (!propagate_down[0]) { return; } | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); | ||
for (int i = 0; i < outer_dim_; ++i) { | ||
caffe_copy(inner_dim_, top_diff, bottom_diff); | ||
top_diff += inner_dim_; | ||
for (int t = 1; t < tiles_; ++t) { | ||
caffe_axpy(inner_dim_, Dtype(1), top_diff, bottom_diff); | ||
top_diff += inner_dim_; | ||
} | ||
bottom_diff += inner_dim_; | ||
} | ||
} | ||
|
||
#ifdef CPU_ONLY | ||
STUB_GPU(TileLayer); | ||
#endif | ||
|
||
INSTANTIATE_CLASS(TileLayer); | ||
REGISTER_LAYER_CLASS(Tile); | ||
|
||
} // namespace caffe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
#include <vector> | ||
|
||
#include "caffe/common_layers.hpp" | ||
#include "caffe/layer.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
__global__ void Tile(const int nthreads, const Dtype* bottom_data, | ||
const int tile_size, const int num_tiles, const int bottom_tile_axis, | ||
Dtype* top_data) { | ||
CUDA_KERNEL_LOOP(index, nthreads) { | ||
const int d = index % tile_size; | ||
const int b = (index / tile_size / num_tiles) % bottom_tile_axis; | ||
const int n = index / tile_size / num_tiles / bottom_tile_axis; | ||
const int bottom_index = (n * bottom_tile_axis + b) * tile_size + d; | ||
top_data[index] = bottom_data[bottom_index]; | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void TileLayer<Dtype>::Forward_gpu( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const Dtype* bottom_data = bottom[0]->gpu_data(); | ||
Dtype* top_data = top[0]->mutable_gpu_data(); | ||
const int bottom_tile_axis = bottom[0]->shape(axis_); | ||
const int nthreads = top[0]->count(); | ||
Tile<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) | ||
<<<CAFFE_GET_BLOCKS(nthreads), CAFFE_CUDA_NUM_THREADS>>>( | ||
nthreads, bottom_data, inner_dim_, tiles_, bottom_tile_axis, top_data); | ||
} | ||
|
||
template <typename Dtype> | ||
__global__ void TileBackward(const int nthreads, const Dtype* top_diff, | ||
const int tile_size, const int num_tiles, const int bottom_tile_axis, | ||
Dtype* bottom_diff) { | ||
CUDA_KERNEL_LOOP(index, nthreads) { | ||
const int d = index % tile_size; | ||
const int b = (index / tile_size) % bottom_tile_axis; | ||
const int n = index / tile_size / bottom_tile_axis; | ||
bottom_diff[index] = 0; | ||
int top_index = (n * num_tiles * bottom_tile_axis + b) * tile_size + d; | ||
for (int t = 0; t < num_tiles; ++t) { | ||
bottom_diff[index] += top_diff[top_index]; | ||
top_index += bottom_tile_axis * tile_size; | ||
} | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void TileLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { | ||
if (!propagate_down[0]) { return; } | ||
const Dtype* top_diff = top[0]->gpu_diff(); | ||
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); | ||
const int bottom_tile_axis = bottom[0]->shape(axis_); | ||
const int tile_size = inner_dim_ / bottom_tile_axis; | ||
const int nthreads = bottom[0]->count(); | ||
TileBackward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) | ||
<<<CAFFE_GET_BLOCKS(nthreads), CAFFE_CUDA_NUM_THREADS>>>( | ||
nthreads, top_diff, tile_size, tiles_, bottom_tile_axis, bottom_diff); | ||
} | ||
|
||
INSTANTIATE_LAYER_GPU_FUNCS(TileLayer); | ||
|
||
} // namespace caffe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
#include <cstring> | ||
#include <vector> | ||
|
||
#include "gtest/gtest.h" | ||
|
||
#include "caffe/blob.hpp" | ||
#include "caffe/common.hpp" | ||
#include "caffe/filler.hpp" | ||
#include "caffe/vision_layers.hpp" | ||
|
||
#include "caffe/test/test_caffe_main.hpp" | ||
#include "caffe/test/test_gradient_check_util.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename TypeParam> | ||
class TileLayerTest : public MultiDeviceTest<TypeParam> { | ||
typedef typename TypeParam::Dtype Dtype; | ||
|
||
protected: | ||
TileLayerTest() | ||
: blob_bottom_(new Blob<Dtype>(2, 3, 4, 5)), | ||
blob_top_(new Blob<Dtype>()) {} | ||
virtual void SetUp() { | ||
blob_bottom_vec_.push_back(blob_bottom_); | ||
blob_top_vec_.push_back(blob_top_); | ||
FillerParameter filler_param; | ||
filler_param.set_mean(0.0); | ||
filler_param.set_std(1.0); | ||
GaussianFiller<Dtype> filler(filler_param); | ||
filler.Fill(blob_bottom_); | ||
} | ||
|
||
virtual ~TileLayerTest() { | ||
delete blob_bottom_; | ||
delete blob_top_; | ||
} | ||
|
||
Blob<Dtype>* const blob_bottom_; | ||
Blob<Dtype>* const blob_top_; | ||
vector<Blob<Dtype>*> blob_bottom_vec_; | ||
vector<Blob<Dtype>*> blob_top_vec_; | ||
}; | ||
|
||
TYPED_TEST_CASE(TileLayerTest, TestDtypesAndDevices); | ||
|
||
TYPED_TEST(TileLayerTest, TestTrivialSetup) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kNumTiles = 1; | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
for (int i = 0; i < this->blob_bottom_->num_axes(); ++i) { | ||
layer_param.mutable_tile_param()->set_axis(i); | ||
TileLayer<Dtype> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); | ||
ASSERT_EQ(this->blob_top_->num_axes(), this->blob_bottom_->num_axes()); | ||
for (int j = 0; j < this->blob_bottom_->num_axes(); ++j) { | ||
EXPECT_EQ(this->blob_top_->shape(j), this->blob_bottom_->shape(j)); | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestSetup) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kNumTiles = 3; | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
for (int i = 0; i < this->blob_bottom_->num_axes(); ++i) { | ||
layer_param.mutable_tile_param()->set_axis(i); | ||
TileLayer<Dtype> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); | ||
ASSERT_EQ(this->blob_top_->num_axes(), this->blob_bottom_->num_axes()); | ||
for (int j = 0; j < this->blob_bottom_->num_axes(); ++j) { | ||
const int top_dim = | ||
((i == j) ? kNumTiles : 1) * this->blob_bottom_->shape(j); | ||
EXPECT_EQ(top_dim, this->blob_top_->shape(j)); | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestForwardNum) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kTileAxis = 0; | ||
const int kNumTiles = 3; | ||
layer_param.mutable_tile_param()->set_axis(kTileAxis); | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
TileLayer<Dtype> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); | ||
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); | ||
for (int n = 0; n < this->blob_top_->num(); ++n) { | ||
for (int c = 0; c < this->blob_top_->channels(); ++c) { | ||
for (int h = 0; h < this->blob_top_->height(); ++h) { | ||
for (int w = 0; w < this->blob_top_->width(); ++w) { | ||
const int bottom_n = n % this->blob_bottom_->num(); | ||
EXPECT_EQ(this->blob_bottom_->data_at(bottom_n, c, h, w), | ||
this->blob_top_->data_at(n, c, h, w)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestForwardChannels) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kNumTiles = 3; | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
TileLayer<Dtype> layer(layer_param); | ||
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); | ||
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); | ||
for (int n = 0; n < this->blob_top_->num(); ++n) { | ||
for (int c = 0; c < this->blob_top_->channels(); ++c) { | ||
for (int h = 0; h < this->blob_top_->height(); ++h) { | ||
for (int w = 0; w < this->blob_top_->width(); ++w) { | ||
const int bottom_c = c % this->blob_bottom_->channels(); | ||
EXPECT_EQ(this->blob_bottom_->data_at(n, bottom_c, h, w), | ||
this->blob_top_->data_at(n, c, h, w)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestTrivialGradient) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kNumTiles = 1; | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
TileLayer<Dtype> layer(layer_param); | ||
GradientChecker<Dtype> checker(1e-2, 1e-2); | ||
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, | ||
this->blob_top_vec_); | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestGradientNum) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kTileAxis = 0; | ||
const int kNumTiles = 3; | ||
layer_param.mutable_tile_param()->set_axis(kTileAxis); | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
TileLayer<Dtype> layer(layer_param); | ||
GradientChecker<Dtype> checker(1e-2, 1e-2); | ||
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, | ||
this->blob_top_vec_); | ||
} | ||
|
||
TYPED_TEST(TileLayerTest, TestGradientChannels) { | ||
typedef typename TypeParam::Dtype Dtype; | ||
LayerParameter layer_param; | ||
const int kTileAxis = 1; | ||
const int kNumTiles = 3; | ||
layer_param.mutable_tile_param()->set_axis(kTileAxis); | ||
layer_param.mutable_tile_param()->set_tiles(kNumTiles); | ||
TileLayer<Dtype> layer(layer_param); | ||
GradientChecker<Dtype> checker(1e-2, 1e-2); | ||
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, | ||
this->blob_top_vec_); | ||
} | ||
|
||
} // namespace caffe |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
INSTANTIATE_LAYER_GPU_FUNCS(TileLayer);
andINSTANTIATE_CLASS(TileLayer);
seem to cause duplicate explicit instantiation ofForward_gpu
andBackward_gpu
. I put theelse
block in a newtile_layer.cu
and solved the problem.