Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Consolidate tools. #789

Merged
merged 6 commits into from
Jul 26, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/cifar10/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ Training the model is simple after you have written the network definition proto
cd $CAFFE_ROOT/examples/cifar10
./train_quick.sh

`train_quick.sh` is a simple script, so have a look inside. `GLOG_logtostderr=1` is the google logging flag that prints all the logging messages directly to stderr. The main tool for training is `train_net.bin`, with the solver protobuf text file as its argument.
`train_quick.sh` is a simple script, so have a look inside. `GLOG_logtostderr=1` is the google logging flag that prints all the logging messages directly to stderr. The main tool for training is `caffe.bin` with the `train` action, and the solver protobuf text file as its argument.

When you run the code, you will see a lot of messages flying by like this:

Expand Down
16 changes: 8 additions & 8 deletions examples/cifar10/train_full.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,15 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin \
cifar10_full_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=cifar10_full_solver.prototxt

#reduce learning rate by factor of 10
GLOG_logtostderr=1 $TOOLS/train_net.bin \
cifar10_full_solver_lr1.prototxt \
cifar10_full_iter_60000.solverstate
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=cifar10_full_solver_lr1.prototxt \
--resume_point_file=cifar10_full_iter_60000.solverstate

#reduce learning rate by factor of 10
GLOG_logtostderr=1 $TOOLS/train_net.bin \
cifar10_full_solver_lr2.prototxt \
cifar10_full_iter_65000.solverstate
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=cifar10_full_solver_lr2.prototxt \
--resume_point_file=cifar10_full_iter_65000.solverstate
7 changes: 5 additions & 2 deletions examples/cifar10/train_quick.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,10 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin cifar10_quick_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=cifar10_quick_solver.prototxt

#reduce learning rate by fctor of 10 after 8 epochs
GLOG_logtostderr=1 $TOOLS/train_net.bin cifar10_quick_solver_lr1.prototxt cifar10_quick_iter_4000.solverstate
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=cifar10_quick_solver_lr1.prototxt \
--resume_point_file=cifar10_quick_iter_4000.solverstate
5 changes: 3 additions & 2 deletions examples/imagenet/resume_training.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin \
imagenet_solver.prototxt caffe_imagenet_train_10000.solverstate
GLOG_logtostderr=1 $TOOLS/caffe.bin train\
--solver_proto_file=imagenet_solver.prototxt \
--resume_point_file=caffe_imagenet_train_10000.solverstate

echo "Done."
3 changes: 2 additions & 1 deletion examples/imagenet/train_alexnet.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin alexnet_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=alexnet_solver.prototxt

echo "Done."
3 changes: 2 additions & 1 deletion examples/imagenet/train_imagenet.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin imagenet_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=imagenet_solver.prototxt

echo "Done."
2 changes: 1 addition & 1 deletion examples/mnist/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ Training the model is simple after you have written the network definition proto
cd $CAFFE_ROOT/examples/mnist
./train_lenet.sh

`train_lenet.sh` is a simple script, but here are a few explanations: `GLOG_logtostderr=1` is the google logging flag that prints all the logging messages directly to stderr. The main tool for training is `train_net.bin`, with the solver protobuf text file as its argument.
`train_lenet.sh` is a simple script, but here are a few explanations: `GLOG_logtostderr=1` is the google logging flag that prints all the logging messages directly to stderr. The main tool for training is `caffe.bin` with action `train`, with the solver protobuf text file as its argument.

When you run the code, you will see a lot of messages flying by like this:

Expand Down
3 changes: 2 additions & 1 deletion examples/mnist/train_lenet.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,5 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin lenet_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=lenet_solver.prototxt
3 changes: 2 additions & 1 deletion examples/mnist/train_lenet_consolidated.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,5 @@

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin lenet_consolidated_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=lenet_consolidated_solver.prototxt
3 changes: 2 additions & 1 deletion examples/mnist/train_mnist_autoencoder.sh
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#!/bin/bash
TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin mnist_autoencoder_solver.prototxt
GLOG_logtostderr=1 $TOOLS/caffe.bin train \
--solver_proto_file=mnist_autoencoder_solver.prototxt
6 changes: 3 additions & 3 deletions include/caffe/caffe.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,15 @@
#ifndef CAFFE_CAFFE_HPP_
#define CAFFE_CAFFE_HPP_

#include "caffe/common.hpp"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/solver.hpp"
#include "caffe/util/benchmark.hpp"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp"

#include "caffe/proto/caffe.pb.h"

#endif // CAFFE_CAFFE_HPP_
178 changes: 178 additions & 0 deletions tools/caffe.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
// Copyright 2014 BVLC and contributors.
#include <gflags/gflags.h>
#include <glog/logging.h>

#include <cstring>
#include <map>
#include <string>
#include <vector>

#include "caffe/caffe.hpp"

using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::shared_ptr;
using caffe::Timer;
using caffe::vector;


// Used in device query
DEFINE_int32(device_id, 0,
"[devicequery,speedtest] The device id to use.");
// Used in training
DEFINE_string(solver_proto_file, "",
"[train] The protobuf containing the solver definition.");
DEFINE_string(net_proto_file, "",
"[speedtest] The net proto file to use.");
DEFINE_string(resume_point_file, "",
"[train] (optional) The snapshot from which to resume training.");
DEFINE_string(pretrained_net_file, "",
"[train] (optional) A pretrained network to run finetune from. "
"Cannot be set simultaneously with resume_point_file.");
DEFINE_int32(run_iterations, 50,
"[speedtest] The number of iterations to run.");
DEFINE_bool(speedtest_with_gpu, false,
"[speedtest] Test the model with GPU.");

// A simple registry for caffe commands.
typedef int (*BrewFunction)();
typedef std::map<caffe::string, BrewFunction> BrewMap;
BrewMap g_brew_map;

#define RegisterBrewFunction(func) \
namespace { \
class __Registerer_##func { \
public: /* NOLINT */ \
__Registerer_##func() { \
g_brew_map[#func] = &func; \
} \
}; \
__Registerer_##func g_registerer_##func; \
}

static BrewFunction GetBrewFunction(const caffe::string& name) {
if (g_brew_map.count(name)) {
return g_brew_map[name];
} else {
LOG(ERROR) << "Available caffe actions:";
for (BrewMap::iterator it = g_brew_map.begin();
it != g_brew_map.end(); ++it) {
LOG(ERROR) << "\t" << it->first;
}
LOG(FATAL) << "Unknown action: " << name;
return NULL; // not reachable, just to suppress old compiler warnings.
}
}

// caffe actions that could be called in the form
// caffe.bin action
// To do so, define actions as "int action()" functions, and register it with
// RegisterBrewFunction(action);

int devicequery() {
LOG(INFO) << "Querying device_id = " << FLAGS_device_id;
caffe::Caffe::SetDevice(FLAGS_device_id);
caffe::Caffe::DeviceQuery();
return 0;
}
RegisterBrewFunction(devicequery);

int train() {
CHECK_GT(FLAGS_solver_proto_file.size(), 0);

caffe::SolverParameter solver_param;
caffe::ReadProtoFromTextFileOrDie(FLAGS_solver_proto_file, &solver_param);

LOG(INFO) << "Starting Optimization";
caffe::SGDSolver<float> solver(solver_param);
if (FLAGS_resume_point_file.size()) {
LOG(INFO) << "Resuming from " << FLAGS_resume_point_file;
solver.Solve(FLAGS_resume_point_file);
} else if (FLAGS_pretrained_net_file.size()) {
LOG(INFO) << "Finetuning from " << FLAGS_pretrained_net_file;
solver.net()->CopyTrainedLayersFrom(FLAGS_pretrained_net_file);
solver.Solve();
} else {
solver.Solve();
}
LOG(INFO) << "Optimization Done.";
return 0;
}
RegisterBrewFunction(train);

int speedtest() {
// Set device id and mode
if (FLAGS_speedtest_with_gpu) {
LOG(INFO) << "Use GPU with device id " << FLAGS_device_id;
Caffe::SetDevice(FLAGS_device_id);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Caffe::set_phase(Caffe::TRAIN);
Net<float> caffe_net(FLAGS_net_proto_file);

// Do a clean forward and backward pass, so that memory allocation are done
// and future iterations will be more stable.
LOG(INFO) << "Performing Forward";
// Note that for the speed benchmark, we will assume that the network does
// not take any input blobs.
float initial_loss;
caffe_net.Forward(vector<Blob<float>*>(), &initial_loss);
LOG(INFO) << "Initial loss: " << initial_loss;
LOG(INFO) << "Performing Backward";
caffe_net.Backward();

const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
const vector<vector<bool> >& bottom_need_backward =
caffe_net.bottom_need_backward();
LOG(INFO) << "*** Benchmark begins ***";
LOG(INFO) << "Testing for " << FLAGS_run_iterations << " iterations.";
Timer total_timer;
total_timer.Start();
Timer forward_timer;
forward_timer.Start();
Timer timer;
for (int i = 0; i < layers.size(); ++i) {
const caffe::string& layername = layers[i]->layer_param().name();
timer.Start();
for (int j = 0; j < FLAGS_run_iterations; ++j) {
layers[i]->Forward(bottom_vecs[i], &top_vecs[i]);
}
LOG(INFO) << layername << "\tforward: " << timer.MilliSeconds() <<
" milli seconds.";
}
LOG(INFO) << "Forward pass: " << forward_timer.MilliSeconds() <<
" milli seconds.";
Timer backward_timer;
backward_timer.Start();
for (int i = layers.size() - 1; i >= 0; --i) {
const caffe::string& layername = layers[i]->layer_param().name();
timer.Start();
for (int j = 0; j < FLAGS_run_iterations; ++j) {
layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
&bottom_vecs[i]);
}
LOG(INFO) << layername << "\tbackward: "
<< timer.MilliSeconds() << " milli seconds.";
}
LOG(INFO) << "Backward pass: " << backward_timer.MilliSeconds() <<
" milli seconds.";
LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() <<
" milli seconds.";
LOG(INFO) << "*** Benchmark ends ***";
return 0;
}
RegisterBrewFunction(speedtest);

int main(int argc, char** argv) {
caffe::GlobalInit(&argc, &argv);
CHECK_EQ(argc, 2);
return GetBrewFunction(caffe::string(argv[1]))();
}
18 changes: 2 additions & 16 deletions tools/device_query.cpp
Original file line number Diff line number Diff line change
@@ -1,23 +1,9 @@
// Copyright 2014 BVLC and contributors.


#include "caffe/common.hpp"
#include "caffe/net.hpp"


using namespace caffe; // NOLINT(build/namespaces)

int main(int argc, char** argv) {
if (argc > 2) {
LOG(ERROR) << "device_query [device_id=0]";
return 1;
}
if (argc == 2) {
LOG(INFO) << "Querying device_id=" << argv[1];
Caffe::SetDevice(atoi(argv[1]));
Caffe::DeviceQuery();
} else {
Caffe::DeviceQuery();
}
LOG(FATAL) << "Deprecated. Use caffe.bin devicequery "
"[--device_id=0] instead.";
return 0;
}
26 changes: 2 additions & 24 deletions tools/finetune_net.cpp
Original file line number Diff line number Diff line change
@@ -1,31 +1,9 @@
// Copyright 2014 BVLC and contributors.
//
// This is a simple script that allows one to quickly finetune a network.
// Usage:
// finetune_net solver_proto_file pretrained_net

#include <string>

#include "caffe/caffe.hpp"

using namespace caffe; // NOLINT(build/namespaces)

int main(int argc, char** argv) {
::google::InitGoogleLogging(argv[0]);
if (argc != 3) {
LOG(ERROR) << "Usage: finetune_net solver_proto_file pretrained_net";
return 1;
}

SolverParameter solver_param;
ReadProtoFromTextFileOrDie(argv[1], &solver_param);

LOG(INFO) << "Starting Optimization";
SGDSolver<float> solver(solver_param);
LOG(INFO) << "Loading from " << argv[2];
solver.net()->CopyTrainedLayersFrom(string(argv[2]));
solver.Solve();
LOG(INFO) << "Optimization Done.";

LOG(FATAL) << "Deprecated. Use caffe.bin train --solver_proto_file=... "
"[--pretrained_net_file=...] instead.";
return 0;
}
Loading