Skip to content

Bala93/CRac

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Class and Region-Adaptive Constraints for Network Calibration (CRac) (MICCAI 2024)

Abstract arXiv

In this work, we present a novel approach to calibrate segmentation networks that considers the inherent challenges posed by different categories and object regions. In particular, we present a formulation that integrates class and region-wise constraints into the learning objective, with multiple penalty weights to account for class and region differences. Finding the optimal penalty weights manually, however, might be unfeasible, and potentially hinder the optimization process. To overcome this limitation, we propose an approach based on Class and Region-Adaptive constraints (CRaC), which allows to learn the class and region-wise penalty weights during training. CRaC is based on a general Augmented Lagrangian method, a well-established technique in constrained optimization. Experimental results on two popular segmentation benchmarks, and two well-known segmentation networks, demonstrate the superiority of CRaC compared to existing approaches.

ACDC

UNet

python tools/train_net.py wandb.enable=True task="lagmedseg" data="cardiac" model="unet" model.num_classes="4" loss="ce" +lag="spatial_bndry_cls_aug_lag" lag.rho=0.1 lag.margin="5" optim="adam" scheduler="step" wandb.project="unet-cardiac"

NNUnet

python tools/train_net.py wandb.enable=True task="lagmedseg" data="cardiac" model="nnunet" model.num_classes="4" loss="ce" +lag="spatial_bndry_cls_aug_lag" lag.rho=0.1 lag.margin="5" optim="adam" scheduler="step" wandb.project="unet-cardiac"

FLARE

UNet

python tools/train_net.py wandb.enable=True task="lagmedseg" data="abdomen" data.batch_size="16" model="unet" model.num_classes="5" loss="ce" +lag="spatial_bndry_cls_aug_lag" lag.rho=0.1 lag.margin=5 optim="adam" scheduler="step" wandb.project="unet-abdomen"

NNUnet

python tools/train_net.py wandb.enable=True task="lagmedseg" data="abdomen" data.batch_size="16" model="nnunet" model.num_classes="5" loss="ce" +lag="spatial_bndry_cls_aug_lag" lag.rho=0.1 lag.margin=5 optim="adam" scheduler="step" wandb.project="unet-abdomen"

Installation

conda create -n crac python=3.8

conda activate crac

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

pip install -r requirements.txt

python setup.py develop

📝 Citation

@article{murugesan2024class,
  title={Class and Region-Adaptive Constraints for Network Calibration},
  author={Murugesan, Balamurali and Silva-Rodriguez, Julio and Ayed, Ismail Ben and Dolz, Jose},
  journal={arXiv preprint arXiv:2403.12364},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages