Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Batching _flat_conjugate_gradient_solve in chirho.robust #466

Merged
merged 1 commit into from
Dec 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 27 additions & 16 deletions chirho/robust/internals/linearize.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def _flat_conjugate_gradient_solve(
b: torch.Tensor,
*,
cg_iters: Optional[int] = None,
residual_tol: float = 1e-10,
residual_tol: float = 1e-3,
) -> torch.Tensor:
r"""Use Conjugate Gradient iteration to solve Ax = b. Demmel p 312.

Expand All @@ -42,31 +42,41 @@ def _flat_conjugate_gradient_solve(
Notes: This code is adapted from
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
"""
assert len(b.shape), "b must be a 2D matrix"

if cg_iters is None:
cg_iters = b.numel()
cg_iters = b.shape[1]
else:
cg_iters = min(cg_iters, b.shape[1])

def _batched_dot(x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return (x1 * x2).sum(axis=-1) # type: ignore

def _batched_product(a: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
return a.unsqueeze(0).t() * B

p = b.clone()
r = b.clone()
x = torch.zeros_like(b)
z = f_Ax(p)
rdotr = torch.dot(r, r)
v = rdotr / torch.dot(p, z)
rdotr = _batched_dot(r, r)
v = rdotr / _batched_dot(p, z)
newrdotr = rdotr
mu = newrdotr / rdotr

zeros_xr = torch.zeros_like(x)

for _ in range(cg_iters):
not_converged = rdotr > residual_tol
z = torch.where(not_converged, f_Ax(p), z)
v = torch.where(not_converged, rdotr / torch.dot(p, z), v)
x += torch.where(not_converged, v * p, zeros_xr)
r -= torch.where(not_converged, v * z, zeros_xr)
newrdotr = torch.where(not_converged, torch.dot(r, r), newrdotr)
not_converged_broadcasted = not_converged.unsqueeze(0).t()
z = torch.where(not_converged_broadcasted, f_Ax(p), z)
v = torch.where(not_converged, rdotr / _batched_dot(p, z), v)
x += torch.where(not_converged_broadcasted, _batched_product(v, p), zeros_xr)
r -= torch.where(not_converged_broadcasted, _batched_product(v, z), zeros_xr)
newrdotr = torch.where(not_converged, _batched_dot(r, r), newrdotr)
mu = torch.where(not_converged, newrdotr / rdotr, mu)
p = torch.where(not_converged, r + mu * p, p)
p = torch.where(not_converged_broadcasted, r + _batched_product(mu, p), p)
rdotr = torch.where(not_converged, newrdotr, rdotr)

if torch.all(~not_converged):
return x
return x


Expand Down Expand Up @@ -162,6 +172,9 @@ def _fn(
func_log_prob, log_prob_params, data, *args, **kwargs
)
pinned_fvp = reset_rng_state(pyro.util.get_rng_state())(fvp)
pinned_fvp_batched = torch.func.vmap(
lambda v: pinned_fvp(v), randomness="different"
)
batched_func_log_prob = torch.vmap(
lambda p, data: func_log_prob(p, data, *args, **kwargs),
in_dims=(None, 0),
Expand All @@ -179,8 +192,6 @@ def bound_batched_func_log_prob(p: ParamDict) -> torch.Tensor:
N_pts = points[next(iter(points))].shape[0] # type: ignore
point_scores = score_fn(1 / N_pts * torch.ones(N_pts))[0]
point_scores = {k: v.unsqueeze(0) for k, v in point_scores.items()}
return torch.func.vmap(
lambda v: cg_solver(pinned_fvp, v), randomness="different"
)(point_scores)
return cg_solver(pinned_fvp_batched, point_scores)

return _fn
15 changes: 12 additions & 3 deletions chirho/robust/internals/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,11 +23,13 @@ def make_flatten_unflatten(

@make_flatten_unflatten.register(torch.Tensor)
def _make_flatten_unflatten_tensor(v: torch.Tensor):
batch_size = v.shape[0]

def flatten(v: torch.Tensor) -> torch.Tensor:
r"""
Flatten a tensor into a single vector.
"""
return v.flatten()
return v.reshape((batch_size, -1))

def unflatten(x: torch.Tensor) -> torch.Tensor:
r"""
Expand All @@ -40,11 +42,13 @@ def unflatten(x: torch.Tensor) -> torch.Tensor:

@make_flatten_unflatten.register(dict)
def _make_flatten_unflatten_dict(d: Dict[str, torch.Tensor]):
batch_size = next(iter(d.values())).shape[0]

def flatten(d: Dict[str, torch.Tensor]) -> torch.Tensor:
r"""
Flatten a dictionary of tensors into a single vector.
"""
return torch.cat([v.flatten() for k, v in d.items()])
return torch.hstack([v.reshape((batch_size, -1)) for k, v in d.items()])

def unflatten(x: torch.Tensor) -> Dict[str, torch.Tensor]:
r"""
Expand All @@ -56,7 +60,12 @@ def unflatten(x: torch.Tensor) -> Dict[str, torch.Tensor]:
[
v_flat.reshape(v.shape)
for v, v_flat in zip(
d.values(), torch.split(x, [v.numel() for k, v in d.items()])
d.values(),
torch.split(
x,
[int(v.numel() / batch_size) for k, v in d.items()],
dim=1,
),
)
],
)
Expand Down
9 changes: 7 additions & 2 deletions tests/robust/test_internals_compositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,15 @@ def test_empirical_fisher_vp_nmclikelihood_cg_composition():

with torch.no_grad():
data = func_predictive(predictive_params)
fvp = make_empirical_fisher_vp(func_log_prob, log_prob_params, data)

fvp = torch.func.vmap(
make_empirical_fisher_vp(func_log_prob, log_prob_params, data)
)

v = {
k: torch.ones_like(v) if k != "guide.loc_a" else torch.zeros_like(v)
k: torch.ones_like(v).unsqueeze(0)
if k != "guide.loc_a"
else torch.zeros_like(v).unsqueeze(0)
for k, v in log_prob_params.items()
}

Expand Down
29 changes: 6 additions & 23 deletions tests/robust/test_internals_linearize.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,22 +34,6 @@
T = TypeVar("T")


@pytest.mark.parametrize("ndim", [1, 2, 3, 10])
@pytest.mark.parametrize("dtype", [torch.float32, torch.float64])
def test_cg_solve(ndim: int, dtype: torch.dtype):
cg_iters = None
residual_tol = 1e-10
U = torch.rand(ndim, ndim, dtype=dtype)
A = torch.eye(ndim, dtype=dtype) + 0.1 * U.mm(U.t())
expected_x = torch.randn(ndim, dtype=dtype)
b = A @ expected_x

actual_x = conjugate_gradient_solve(
lambda v: A @ v, b, cg_iters=cg_iters, residual_tol=residual_tol
)
assert torch.sum((actual_x - expected_x) ** 2) < 1e-4


@pytest.mark.parametrize("ndim", [1, 2, 3, 10])
@pytest.mark.parametrize("dtype", [torch.float32, torch.float64])
@pytest.mark.parametrize("num_particles", [1, 4])
Expand All @@ -63,14 +47,13 @@ def test_batch_cg_solve(ndim: int, dtype: torch.dtype, num_particles: int):
b = torch.einsum("ij,nj->ni", A, expected_x)
assert b.shape == (num_particles, ndim)

batch_solve = torch.vmap(
functools.partial(
conjugate_gradient_solve,
lambda v: A @ v,
cg_iters=cg_iters,
residual_tol=residual_tol,
),
batch_solve = functools.partial(
conjugate_gradient_solve,
lambda v: torch.einsum("ij,nj->ni", A, v),
cg_iters=cg_iters,
residual_tol=residual_tol,
)

actual_x = batch_solve(b)

assert torch.all(torch.sum((actual_x - expected_x) ** 2, dim=1) < 1e-4)
Expand Down
Loading