forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add num_splist to support deterministic for flash_attn_bwd and FlashA…
…ttnUnpaddedGradKernel (PaddlePaddle#56363) * add num_splist for flash_attn_bwd and FlashAttnUnpaddedGradKernel * Add assertTrue * Update submodule to a specific commit
- Loading branch information
1 parent
5e09042
commit d5558c4
Showing
3 changed files
with
219 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import re | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
import paddle | ||
import paddle.nn.functional as F | ||
from paddle.device import core | ||
from paddle.nn.functional.flash_attention import ( | ||
flash_attention, | ||
scaled_dot_product_attention, | ||
) | ||
|
||
|
||
def get_cuda_version(): | ||
result = os.popen("nvcc --version").read() | ||
regex = r'release (\S+),' | ||
match = re.search(regex, result) | ||
if match: | ||
num = str(match.group(1)) | ||
integer, decimal = num.split('.') | ||
return int(integer) * 1000 + int(float(decimal) * 10) | ||
else: | ||
return -1 | ||
|
||
|
||
def attention_naive(q, k, v, causal=False): | ||
qt = paddle.transpose(q, [0, 2, 1, 3]) | ||
kt = paddle.transpose(k, [0, 2, 1, 3]) | ||
vt = paddle.transpose(v, [0, 2, 1, 3]) | ||
scale = 1.0 / np.sqrt(q.shape[-1]) | ||
s = paddle.matmul(qt, paddle.transpose(kt, [0, 1, 3, 2])) | ||
s = paddle.scale(s, scale) | ||
p = ( | ||
paddle.incubate.softmax_mask_fuse_upper_triangle(s) | ||
if causal | ||
else F.softmax(s) | ||
) | ||
o = paddle.matmul(p, vt) | ||
return paddle.transpose(o, [0, 2, 1, 3]) | ||
|
||
|
||
is_sm8x = ( | ||
core.is_compiled_with_cuda() | ||
and paddle.device.cuda.get_device_capability()[0] == 8 | ||
and paddle.device.cuda.get_device_capability()[1] >= 0 | ||
) | ||
|
||
is_sm90 = ( | ||
core.is_compiled_with_cuda() | ||
and paddle.device.cuda.get_device_capability()[0] == 9 | ||
and paddle.device.cuda.get_device_capability()[1] == 0 | ||
) | ||
|
||
is_sm_supported = is_sm8x or is_sm90 | ||
|
||
|
||
@unittest.skipIf( | ||
not core.is_compiled_with_cuda() | ||
or get_cuda_version() < 11040 | ||
or not is_sm_supported, | ||
"core is not compiled with CUDA and cuda version need larger than or equal to 11.4" | ||
"and device's compute capability must be 8.x or 90", | ||
) | ||
class TestFlashAttentionAPIFlag(unittest.TestCase): | ||
def setUp(self): | ||
self.place = paddle.CUDAPlace(0) | ||
self.shape = (2, 128, 8, 16) | ||
self.dtype = 'float16' | ||
self.dropout = 0.0 | ||
self.causal = False | ||
self.return_softmax = False | ||
self.use_sdp_kernel = False | ||
self.use_sdp_api = False | ||
|
||
def flash_attn_compute(self, query, key, value): | ||
# test dynamic | ||
paddle.disable_static() | ||
|
||
q = paddle.to_tensor( | ||
query, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
k = paddle.to_tensor( | ||
key, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
v = paddle.to_tensor( | ||
value, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
|
||
q_ = paddle.to_tensor( | ||
query, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
k_ = paddle.to_tensor( | ||
key, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
v_ = paddle.to_tensor( | ||
value, place=self.place, dtype=self.dtype, stop_gradient=False | ||
) | ||
|
||
if self.use_sdp_kernel: | ||
with paddle.nn.functional.sdp_kernel( | ||
enable_math=self.enable_math, | ||
enable_flash=self.enable_flash, | ||
enable_mem_efficient=self.enable_mem_efficient, | ||
): | ||
if self.use_sdp_api: | ||
out = scaled_dot_product_attention( | ||
q, k, v, None, self.dropout, self.causal | ||
) | ||
else: | ||
out, _ = flash_attention( | ||
q, k, v, self.dropout, self.causal, self.return_softmax | ||
) | ||
|
||
else: | ||
out, _ = flash_attention( | ||
q, k, v, self.dropout, self.causal, self.return_softmax | ||
) | ||
out_ = attention_naive(q_, k_, v_, self.causal) | ||
|
||
out.backward() | ||
out_.backward() | ||
|
||
self.assertEqual(q.grad.shape, q.shape) | ||
self.assertEqual(q_.grad.shape, q.shape) | ||
|
||
np.testing.assert_allclose( | ||
q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03 | ||
) | ||
|
||
return out, out_, q.grad.numpy(), k.grad.numpy(), v.grad.numpy() | ||
|
||
def test_all_flag(self): | ||
paddle.set_flags({'FLAGS_cudnn_deterministic': 1}) | ||
query = np.random.random(self.shape) | ||
key = np.random.random(self.shape) | ||
value = np.random.random(self.shape) | ||
|
||
out1, out1_, q_grad1, k_grad1, v_grad1 = self.flash_attn_compute( | ||
query, key, value | ||
) | ||
|
||
np.testing.assert_allclose(out1.numpy(), out1_, rtol=5e-03, atol=1e-03) | ||
|
||
out2, out2_, q_grad2, k_grad2, v_grad2 = self.flash_attn_compute( | ||
query, key, value | ||
) | ||
self.assertTrue(np.equal(out1.numpy(), out2.numpy()).all()) | ||
self.assertTrue(np.equal(q_grad1, q_grad2).all()) | ||
self.assertTrue(np.equal(k_grad1, k_grad2).all()) | ||
self.assertTrue(np.equal(v_grad1, v_grad2).all()) | ||
paddle.set_flags({'FLAGS_cudnn_deterministic': 0}) | ||
|
||
|
||
class TestFlashAttentionAPIFlagTest1(TestFlashAttentionAPIFlag): | ||
def setUp(self): | ||
self.place = paddle.CUDAPlace(0) | ||
self.shape = (2, 128, 8, 16) | ||
self.dtype = paddle.float16 | ||
self.dropout = 0.0 | ||
self.causal = False | ||
self.return_softmax = False | ||
self.use_sdp_kernel = False | ||
|
||
|
||
class TestFlashAttentionAPIFlagTest2(TestFlashAttentionAPIFlag): | ||
def setUp(self): | ||
self.place = paddle.CUDAPlace(0) | ||
self.shape = (8, 1024, 16, 256) | ||
self.dtype = paddle.float16 | ||
self.dropout = 0.0 | ||
self.causal = False | ||
self.return_softmax = False | ||
self.use_sdp_kernel = False | ||
|
||
|
||
class TestSDPAttentionAPIFlagTest(TestFlashAttentionAPIFlag): | ||
def setUp(self): | ||
self.place = paddle.CUDAPlace(0) | ||
self.shape = (8, 1024, 16, 128) | ||
self.dtype = paddle.float16 | ||
self.dropout = 0.0 | ||
self.causal = False | ||
self.return_softmax = False | ||
self.use_sdp_kernel = True | ||
self.use_sdp_api = True | ||
self.enable_math = True | ||
self.enable_flash = False | ||
self.enable_mem_efficient = False | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Submodule flashattn
updated
5 files
+21 −11 | csrc/capi/flash_attn.cu | |
+2 −0 | csrc/capi/flash_attn.h | |
+1 −0 | csrc/flash_attn/src/flash.h | |
+10 −2 | csrc/flash_attn/src/flash_bwd_kernel.h | |
+1 −1 | csrc/flash_attn/src/flash_bwd_launch_template.h |