Skip to content

BellmanTimeHut/DIPO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Policy Representation via Diffusion Probability Model for Reinforcement Learning

We formally build a theoretical foundation of policy representation via the diffusion probability model and provide practical implementations of diffusion policy for online model-free RL.

Paper link: https://arxiv.org/pdf/2305.13122.pdf

Experiments

Requirements

Installations of PyTorch and MuJoCo are needed. A suitable conda environment named DIPO can be created and activated with:

conda create DIPO
conda activate DIPO

To get started, install the additionally required python packages into you environment.

pip install -r requirements.txt

Running

Running experiments based our code could be quite easy, so below we use Hopper-v3 task as an example.

python main.py --env_name Hopper-v3 --num_steps 1000000 --n_timesteps 100 --cuda 0 --seed 0

Hyperparameters

Hyperparameters for DIPO have been shown as follow for easily reproducing our reported results.

Hyper-parameters for algorithms

Hyperparameter DIPO SAC TD3 PPO
No. of hidden layers 2 2 2 2
No. of hidden nodes 256 256 256 256
Activation mish relu relu tanh
Batch size 256 256 256 256
Discount for reward $\gamma$ 0.99 0.99 0.99 0.99
Target smoothing coefficient $\tau$ 0.005 0.005 0.005 0.005
Learning rate for actor $3 × 10^{-4}$ $3 × 10^{-4}$ $3 × 10^{-4}$ $7 × 10^{-4}$
Learning rate for critic $3 × 10^{-4}$ $3 × 10^{-4}$ $3 × 10^{-4}$ $7 × 10^{-4}$
Actor Critic grad norm 2 N/A N/A 0.5
Memeroy size $1 × 10^6$ $1 × 10^6$ $1 × 10^6$ $1 × 10^6$
Entropy coefficient N/A 0.2 N/A 0.01
Value loss coefficient N/A N/A N/A 0.5
Exploration noise N/A N/A $\mathcal{N}$(0, 0.1) N/A
Policy noise N/A N/A $\mathcal{N}$(0, 0.2) N/A
Noise clip N/A N/A 0.5 N/A
Use gae N/A N/A N/A True

Hyper-parameters for MuJoCo.(DIPO)

Hyperparameter Hopper-v3 Walker2d-v3 Ant-v3 HalfCheetah-v3 Humanoid-v3
Learning rate for action 0.03 0.03 0.03 0.03 0.03
Actor Critic grad norm 1 2 0.8 2 2
Action grad norm ratio 0.3 0.08 0.1 0.08 0.1
Action gradient steps 20 20 20 40 20
Diffusion inference timesteps 100 100 100 100 100
Diffusion beta schedule cosine cosine cosine cosine cosine
Update actor target every 1 1 1 2 1

Contact

If you have any questions regarding the code or paper, feel free to send all correspondences to yanglong001@pku.edu.cn or zx.huang@zju.edu.cn

Difussion Policy

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published