This repo has been deprecated. Please see CDLab, which includes more architectures and datasets.
This is an unofficial implementation of the paper
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. (2018, October). Fully convolutional siamese networks for change detection. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4063-4067). IEEE.
as the official repo does not provide the training code.
opencv-python==4.1.1
pytorch==1.3.1
torchvision==0.4.2
pyyaml==5.1.2
scikit-image==0.15.0
scikit-learn==0.21.3
scipy==1.3.1
tqdm==4.35.0
Tested using Python 3.7.4 on Ubuntu 16.04 and Python 3.6.8 on Windows 10.
# The network definition scripts are from the original repo
git clone --recurse-submodules git@github.com:Bobholamovic/FCN-CD-PyTorch.git
cd FCN-CD-PyTorch
mkdir exp
cd src
In src/constants.py
, change the dataset locations to your own. In config_base.yaml
, set specific configurations.
For training, try
python train.py train --exp_config ../configs/config_base.yaml
For evaluation, try
python train.py eval --exp_config ../configs/config_base.yaml --resume path_to_checkpoint --save-on
You can check the model weight files in exp/base/weights/
, the log files in exp/base/logs
, and the output change maps in exp/base/out
.
- 2020.3.14 Add configuration files.
- 2020.4.14 Detail README.md.
- 2020.12.8 Update framework.